
Directed Synthesis of Failing
Concurrent Executions

Malavika Samak*, Omer Tripp+, Murali Krishna Ramanathan*
* Indian Institute of Science + Google Inc, Mountain View

Multi-threaded libraries are useful …

• Provides safety guarantees under concurrency

Multi-threaded libraries are useful …

• Provides safety guarantees under concurrency

• Ensures performance benefits

Multi-threaded libraries are useful …

• Provides safety guarantees under concurrency

• Ensures performance benefits

Multi-threaded libraries are useful …

• Provides safety guarantees under concurrency

• Ensures performance benefits

Multi-threaded libraries are useful …

Makes building multithreaded applications easier

Building multi-threaded libraries

Building multi-threaded libraries

Class under
construction

Building multi-threaded libraries

Class under
construction

Building multi-threaded libraries

Class under
construction

Need to handle various issues
associated with multithreading

Building multi-threaded libraries

Class under
construction • Functionality

• Performance
• Concurrency
• Modularity
• Data Structures
• Shared state
• Lock field correlation
• …

Need to handle various issues
associated with multithreading

Building multi-threaded libraries

Class under
construction • Functionality

• Performance
• Concurrency
• Modularity
• Data Structures
• Shared state
• Lock field correlation
• …

Need to handle various issues
associated with multithreading

Building multi-threaded libraries

Class under
construction • Functionality

• Performance
• Concurrency
• Modularity
• Data Structures
• Shared state
• Lock field correlation
• …

Need to handle various issues
associated with multithreading

Building multi-threaded libraries

Class under
construction • Functionality

• Performance
• Concurrency
• Modularity
• Data Structures
• Shared state
• Lock field correlation
• …

Need to handle various issues
associated with multithreading

Building multi-threaded libraries

Class under
construction • Functionality

• Performance
• Concurrency
• Modularity
• Data Structures
• Shared state
• Lock field correlation
• …

Need to handle various issues
associated with multithreading

Building multi-threaded libraries

Class under
construction • Functionality

• Performance
• Concurrency
• Modularity
• Data Structures
• Shared state
• Lock field correlation
• …

Need to handle various issues
associated with multithreading

Building multi-threaded libraries

Class under
construction • Functionality

• Performance
• Concurrency
• Modularity
• Data Structures
• Shared state
• Lock field correlation
• …

Need to handle various issues
associated with multithreading

Building multi-threaded libraries

Class under
construction • Functionality

• Performance
• Concurrency
• Modularity
• Data Structures
• Shared state
• Lock field correlation
• …

Need to handle various issues
associated with multithreading

Class under
construction • Functionality

• Performance
• Concurrency
• Modularity
• Data Structures
• Shared state
• Lock field correlation
• …

Building multi-threaded libraries

Class under
construction • Functionality

• Performance
• Concurrency
• Modularity
• Data Structures
• Shared state
• Lock field correlation
• …

Building multi-threaded libraries

Simultaneously handling the issues
can introduce bugs

Class under
construction • Functionality

• Performance
• Concurrency
• Modularity
• Data Structures
• Shared state
• Lock field correlation
• …

Building multi-threaded libraries

Class under
construction • Functionality

• Performance
• Concurrency
• Modularity
• Data Structures
• Shared state
• Lock field correlation
• …

Building multi-threaded libraries

Perform modular testing of various properties

Class under
construction • Functionality

• Performance
• Concurrency
• Modularity
• Data Structures
• Shared state
• Lock field correlation
• …

Building multi-threaded libraries

Perform modular testing of various properties

Testing multi-threaded libraries

Class under
construction

Testing multi-threaded libraries

Class under
construction

Class under
construction

Testing multi-threaded libraries

Class under
construction

Client

Testing multi-threaded libraries

Class under
construction

Client

Testing multi-threaded libraries

Class under
construction

Client

• Invokes the APIs provided by the class.

Testing multi-threaded libraries

Class under
construction

Client

• Invokes the APIs provided by the class.
• Exposes the broken contracts in the library.

Testing multi-threaded libraries

Class under
construction

Client

• Invokes the APIs provided by the class.
• Exposes the broken contracts in the library.
• Facilitates regression testing.

Testing multi-threaded libraries

DeveloperClient

Testing multi-threaded libraries

DeveloperClient

Testing multi-threaded libraries

DeveloperClient

Testing multi-threaded libraries

DeveloperClient

Testing multi-threaded libraries

Challenges

DeveloperClient

Testing multi-threaded libraries
How many threads need to
be created?

Challenges

DeveloperClient

Testing multi-threaded libraries
How many threads need to
be created?

What methods need to be
invoked?

Challenges

DeveloperClient

Testing multi-threaded libraries
How many threads need to
be created?

What methods need to be
invoked?

What are the parameters to
these methods?

Challenges

DeveloperClient

Testing multi-threaded libraries
How many threads need to
be created?

What methods need to be
invoked?

What are the parameters to
these methods?

What is the schedule that
needs to be followed?

Challenges

Client synthesis for multi-threaded
libraries

Client synthesis for multi-threaded
libraries

Class under
test

Client synthesis for multi-threaded
libraries

Class under
test

Client synthesis for multi-threaded
libraries

?

Class under
test

Client synthesis for multi-threaded
libraries

?

Class under
test

Client

Client synthesis for multi-threaded
libraries

?

Class under
test

Story of the black box so far…

Story of the black box so far…

Randomized generation

Pradel and Gross, PLDI’12

Story of the black box so far…

Randomized generation

Pradel and Gross, PLDI’12 Crashes and Deadlocks

Story of the black box so far…

Randomized generation

Pradel and Gross, PLDI’12

Targeted generation

Crashes and Deadlocks

Story of the black box so far…

Randomized generation

Pradel and Gross, PLDI’12

Targeted generation
Samak and Ramanathan,

OOPSLA’14

Crashes and Deadlocks

Story of the black box so far…

Randomized generation

Pradel and Gross, PLDI’12

Targeted generation
Samak and Ramanathan,

OOPSLA’14

Samak, Ramanathan, Jagannathan
 PLDI’15

Crashes and Deadlocks

Story of the black box so far…

Randomized generation

Pradel and Gross, PLDI’12

Targeted generation
Samak and Ramanathan,

OOPSLA’14

Samak, Ramanathan, Jagannathan
 PLDI’15

Samak and Ramanathan,
FSE’15

Crashes and Deadlocks

Story of the black box so far…

Randomized generation

Pradel and Gross, PLDI’12

Targeted generation
Samak and Ramanathan,

OOPSLA’14

Samak, Ramanathan, Jagannathan
 PLDI’15

Samak and Ramanathan,
FSE’15

Crashes and Deadlocks

Dynamic
Analysis
Engine

Story of the black box so far…

Randomized generation

Pradel and Gross, PLDI’12

Targeted generation
Samak and Ramanathan,

OOPSLA’14

Samak, Ramanathan, Jagannathan
 PLDI’15

Samak and Ramanathan,
FSE’15

Crashes and Deadlocks

Deadlocks

Data races

Atomicity
violations

Dynamic
Analysis
Engine

Story of the black box so far…

Randomized generation

Pradel and Gross, PLDI’12

Targeted generation
Samak and Ramanathan,

OOPSLA’14

Samak, Ramanathan, Jagannathan
 PLDI’15

Samak and Ramanathan,
FSE’15

Crashes and Deadlocks

Deadlocks

Data races

Atomicity
violations

Dynamic
Analysis
Engine

Need a targeted approach to
reveal crashes

and now…

and now…

Detecting crashes in a library requires:

and now…

Detecting crashes in a library requires:

Well designed multi-threaded clients

and now…

Detecting crashes in a library requires:

Well designed multi-threaded clients

Specific thread interleavings

and now…

Detecting crashes in a library requires:

Well designed multi-threaded clients

Specific thread interleavings

We propose MINION

Class under test

Class under test

assert(p1)

Class under test

Random
sequential test

assert(p1)

Class under test

Random
sequential test

Multi-threaded
client

assert(p1)

Class under test

Random
sequential test

Multi-threaded
client

assert(p1)

Class under test

Random
sequential test

Multi-threaded
client

Thread
interleaving

assert(p1)

Class under test

Random
sequential test

Multi-threaded
client

Thread
interleaving

Crash

assert(p1)

Example from JDK 8

PushbackReader.java

Example from JDK 8

PushbackReader.java

Example from JDK 8

assert(buf != null);

PushbackReader.java

Example from JDK 8

assert(buf != null);

PushbackReader.java

Example from JDK 8

assert(buf != null);

assert(buf != null);

PushbackReader.java

Example from JDK 8

assert(buf != null);

assert(buf != null);

PushbackReader.java

Example from JDK 8

assert(buf != null);

assert(buf != null);

PushbackReader.java

Example from JDK 8

assert(buf != null);

assert(buf != null);

Fail this assert!

PushbackReader.java

Example from JDK 8

assert(buf != null);

assert(buf != null);

Fail this assert!

This assert
holds!

PushbackReader.java

Example from JDK 8

assert(buf != null);

assert(buf != null);

PushbackReader.java

Example from JDK 8

assert(buf != null);

assert(buf != null);

buf != null

PushbackReader.java

Example from JDK 8

assert(buf != null);

assert(buf != null);

buf == null

buf != null

PushbackReader.java

Example from JDK 8

assert(buf != null);

PushbackReader.java

Example from JDK 8

assert(buf != null);

PushbackReader.java

Example from JDK 8

assert(buf != null);

PushbackReader.java

Example from JDK 8

assert(buf != null);

Evaluate to true

PushbackReader.java

Example from JDK 8

assert(buf != null);

Evaluate to true
Don’t care

PushbackReader.java

Example from JDK 8

assert(buf != null);

PushbackReader.java

Crash found by Minion in JDK8

PushbackReader.java

Crash found by Minion in JDK8

PushbackReader.java

Execution synthesis

Execution synthesis
Random execution

C1

C2

C3

…

Execution synthesis
Random execution

C1

C2

C3

…

Execution synthesis
Target execution

C1

C2

C3

…

Random execution

C1

C2

C3

…

Execution synthesis
Target execution

C1

C2

C3

…

Random execution

C1

C2

C3

… The path can be
sequentially infeasible

Execution synthesis

m1 m2m3t1: t2: t3:

Execution synthesis

m1 m2m3

• Methods invoked from different threads appropriately

t1: t2: t3:

Execution synthesis

m1 m2m3

C1

C2

C3

…

• Methods invoked from different threads appropriately

t1: t2: t3:

Execution synthesis

m1 m2m3

C1

C2

C3

…

• Methods invoked from different threads appropriately
• Specific interleaving needs to be followed

t1: t2: t3:

Execution synthesis

m1 m2m3

C1

C2

C3

…

• Methods invoked from different threads appropriately
• Specific interleaving needs to be followed

t1: t2: t3:

Execution synthesis

m1 m2m3

C1

C2

C3

…

• Methods invoked from different threads appropriately
• Specific interleaving needs to be followed

t1: t2: t3:

Approach Overview

Approach Overview
Static analysis

Approach Overview
Static analysis

targets: locate assertions to violate and updates to fields

Approach Overview
Static analysis

targets: locate assertions to violate and updates to fields

derive path conditions to reach target instructions

Approach Overview
Static analysis

targets: locate assertions to violate and updates to fields

derive path conditions to reach target instructions

Dynamic analysis

Approach Overview
Static analysis

targets: locate assertions to violate and updates to fields

derive path conditions to reach target instructions

Dynamic analysis

obtain concrete data by executing provided tests

Approach Overview
Static analysis

targets: locate assertions to violate and updates to fields

derive path conditions to reach target instructions

Dynamic analysis

obtain concrete data by executing provided tests

path conditions traversed, value of fields, etc

Approach Overview
Static analysis

targets: locate assertions to violate and updates to fields

derive path conditions to reach target instructions

Dynamic analysis

obtain concrete data by executing provided tests

path conditions traversed, value of fields, etc

Constraint solvers

Approach Overview
Static analysis

targets: locate assertions to violate and updates to fields

derive path conditions to reach target instructions

Dynamic analysis

obtain concrete data by executing provided tests

path conditions traversed, value of fields, etc

Constraint solvers

encode path constraints, read-write constraints, lock constraints and parameter
constraints using information from static and dynamic analysis

Approach Overview
Static analysis

targets: locate assertions to violate and updates to fields

derive path conditions to reach target instructions

Dynamic analysis

obtain concrete data by executing provided tests

path conditions traversed, value of fields, etc

Constraint solvers

encode path constraints, read-write constraints, lock constraints and parameter
constraints using information from static and dynamic analysis

synthesize structure of new clients and schedules

Approach Overview
Static analysis

targets: locate assertions to violate and updates to fields

derive path conditions to reach target instructions

Dynamic analysis

obtain concrete data by executing provided tests

path conditions traversed, value of fields, etc

Constraint solvers

encode path constraints, read-write constraints, lock constraints and parameter
constraints using information from static and dynamic analysis

synthesize structure of new clients and schedules

Leverage the above components; iterate until target is reached

Iteration - 1 : Static analysis
m1 m3m2

C1

C2

C3

…

m1

Iteration - 1 : Static analysis
m1 m3m2

C1

C2

C3

…

m1

Iteration - 1 : Static analysis
m2m1 m3m2

C1

C2

C3

…

m1

Iteration - 1 : Static analysis
m2 m3m1 m3m2

C1

C2

C3

…

m1

Iteration - 1 : Static analysis
m2 m3

• Static analysis identifies the target

m1 m3m2

C1

C2

C3

…

m1

Iteration - 1 : Static analysis
m2 m3

• Static analysis identifies the target

• Proposes the plan to reach the
target

m1 m3m2

C1

C2

C3

…

m1

Iteration - 1 : Static analysis
m2 m3

• Static analysis identifies the target

• Proposes the plan to reach the
target

m1 m3m2

C1

C2

C3

…

m1

Iteration - 1 : Concrete Execution

m3m2t1:

C1

C2

C3

…

m1

Iteration - 1 : Concrete Execution

m3m2

• Random paths are exposed by
the current client

t1:

C1

C2

C3

…

m1

Iteration - 1 : Concrete Execution

m3m2

• Random paths are exposed by
the current client

• The execution does not crash

t1:

C1

C2

C3

…

m1

Iteration - 1 : Concrete Execution

m3m2

• Random paths are exposed by
the current client

• The execution does not crash

Execution does not follow the plan
proposed by static analysis

t1:

C1

C2

C3

…

m1 m3m2

Iteration - 1 : Concrete Execution
t1:

C1

C2

C3

…

m1 m3m2

Attempt to synthesize an
execution where C1 is negated

Iteration - 1 : Concrete Execution
t1:

C1

C2

C3

…

m1 m3m2

Iteration - 1 : Concrete Execution
t1:

C1

C2

C3

…

m1 m3m2

cons2cons1 cons3

Iteration - 1 : Concrete Execution
t1:

C1

C2

C3

…

m1 m3m2

cons2cons1 cons3 !C1

Iteration - 1 : Concrete Execution
t1:

Iteration - 1 : Client Synthesis

C1

C2

C3

…

m1 m3m2main thread :

cons2cons1 cons3 !C1

Iteration - 1 : Client Synthesis

C1

C2

C3

…

m1 m3m2main thread :

SMT SOLVER

cons2cons1 cons3 !C1

Iteration - 1 : Client Synthesis

C1

C2

C3

…

m1 m3m2main thread :

SMT SOLVER

cons2cons1 cons3 !C1

Iteration - 1 : Client Synthesis

C1

C2

C3

…

m1 m3m2main thread :

SMT SOLVER

Iteration - 1 : Client Synthesis

C1

C2

C3

…

m1 m3m2main thread :

SMT SOLVER

Client-1, Schedule-1

Iteration - 2 : Concrete Execution
m1 m3m2t1 : t2 :New

client

C1

C2

C3

…

m1 m3m2t1 : t2 :

Iteration - 2 : Concrete Execution
New
client

Schedule

C1

C2

C3

…

m1 m3m2t1 : t2 :

Iteration - 2 : Concrete Execution
New
client

Schedule

C1

C2

C3

…

m1 m3m2t1 : t2 :

Iteration - 2 : Concrete Execution
New
client

Schedule

C1

C2

C3

…

m1 m3m2t1 : t2 :

Iteration - 2 : Concrete Execution

C1

C2

C3

…

m1 m3m2t1 : t2 :

Iteration - 2 : Concrete Execution

C1

C2

C3

…

m1 m3m2t1 : t2 :

Iteration - 2 : Concrete Execution

This execution still
does NOT follow the

plan of static analysis

C1

C2

C3

…

m1 m3m2t1 : t2 :

Iteration - 2 : Concrete Execution

C1

C2

C3

…

m1 m3m2t1 : t2 :

Iteration - 2 : Concrete Execution

cons2cons1 cons3

C1

C2

C3

…

m1 m3m2t1 : t2 :

Iteration - 2 : Concrete Execution

cons2cons1 cons3 !C2

C1

C2

C3

…

m1 m3m2t1 : t2 :

Iteration - 2 : Concrete Execution

cons2cons1 cons3 !C2

C1

C2

C3

…

m1 m3m2t1 : t2 :

Iteration - 2 : Concrete Execution

SOLVER

cons2cons1 cons3 !C2

C1

C2

C3

…

m1 m3m2t1 : t2 :

Iteration - 2 : Concrete Execution

SOLVER

cons2cons1 cons3 !C2

C1

C2

C3

…

m1 m3m2t1 : t2 :

Iteration - 2 : Concrete Execution

SOLVER

C1

C2

C3

…

m1 m3m2t1 : t2 :

Iteration - 2 : Concrete Execution

SOLVER

C1

C2

C3

…

m1 m3m2t1 : t2 :

Iteration - 2 : Concrete Execution

SOLVER UNSAT

C1

C2

C3

…

m1 m3m2t1 : t2 :

Iteration - 2 : Concrete Execution

SOLVER UNSAT

STUCK!!

C1

C2

C3

…

m1 m3m2t1 : t2 :

Iteration - 2 : Concrete Execution

SOLVER UNSAT

STUCK!!

Updates seen on executed paths in m2, m3
cannot negate C2; Use static analysis

m1 m3m2t1 : t2 :

Iteration - 3 : Static Analysis

m1 m3m2t1 :

C1

C2

C3

…

t2 :

Iteration - 3 : Static Analysis

m1 m3m2t1 :

C1

C2

C3

…

t2 :

Iteration - 3 : Static Analysis

• Static analysis identifies the sub-target

m1 m3m2t1 :

C1

C2

C3

…

t2 :

Iteration - 3 : Static Analysis

• Static analysis identifies the sub-target

• Proposes a plan to reach this sub-target

m1 m3m2t1 :

C1

C2

C3

…

t2 :

Iteration - 3 : Static Analysis

• Static analysis identifies the sub-target

• Proposes a plan to reach this sub-target

m1 m3m2t1 :

C1

C2

C3

…

t2 :

Iteration - 3 : Concrete Execution

Apply MINION for
reaching this target

After a few more iterations…

Iteration - 4 : Concrete Execution
m1 m2t1 : t2 : m3t3 :

…

Iteration - 4 : Concrete Execution
m1 m3m2t1 :

C1

C2

C3

…

t2 : t3 :

…

Iteration - 4 : Concrete Execution
m1 m3m2t1 :

C1

C2

C3

…

t2 :

cons3cons1 cons2

t3 :

…

Iteration - 4 : Concrete Execution
m1 m3m2t1 :

C1

C2

C3

…

t2 :

cons3cons1 !C2cons2

t3 :

Iteration - 4 : Concrete Execution

…

m1 m3m2t1 :

C1

C2

C3

…

t2 : t3 :

SOLVER

cons2cons1 cons3 !C2

Iteration - 4 : Concrete Execution

…

m1 m3m2t1 :

C1

C2

C3

…

t2 : t3 :

SOLVER

cons2cons1 cons3 !C2

Iteration - 4 : Concrete Execution

…

m1 m3m2t1 :

C1

C2

C3

…

t2 : t3 :

SOLVER

Iteration - 4 : Concrete Execution

…

m1 m3m2t1 :

C1

C2

C3

…

t2 : t3 :

SOLVER

Iteration - 4 : Concrete Execution

…

m1 m3m2t1 :

C1

C2

C3

…

t2 : t3 :

SOLVER

Client-4, Schedule-4

Iteration - 4 : Concrete Execution
m1 m3m2t1 :

C1

C2

C3

…

t2 : t3 :

Iteration - 4 : Concrete Execution
m1 m3m2t1 :

C1

C2

C3

…

t2 : t3 :

Iteration - 4 : Concrete Execution
m1 m3m2t1 :

C1

C2

C3

…

t2 : t3 :

Iteration - 4 : Concrete Execution
m1 m3m2t1 :

C1

C2

C3

…

t2 : t3 :

Iteration - 4 : Concrete Execution
m1 m3m2t1 :

C1

C2

C3

…

t2 : t3 :

Iteration - 4 : Concrete Execution
m1 m3m2t1 :

C1

C2

C3

…

t2 : t3 :

Iteration - 4 : Concrete Execution
m1 m3m2t1 :

C1

C2

C3

…

t2 : t3 :

Crashed
Execution!

Implementation

Implementation

Built on top of the SOOT bytecode analysis
framework

Implementation

Built on top of the SOOT bytecode analysis
framework

Used the Z3 constraint solver

Implementation

Built on top of the SOOT bytecode analysis
framework

Used the Z3 constraint solver

Evaluated on open source Java libraries

Implementation

Built on top of the SOOT bytecode analysis
framework

Used the Z3 constraint solver

Evaluated on open source Java libraries

Input sequential client: invoke each method
in a class once with random objects

Benchmark Information

Benchmark Information

Benchmark Information

Benchmark Information

Results

Results

Results

Results

Results

Results

31 crashes due to concurrency

Bug Characteristics

Bug Characteristics
MINION detects complex concurrency issues

Bug Characteristics
MINION detects complex concurrency issues

Bug Characteristics
MINION detects complex concurrency issues

Bug Characteristics
MINION detects complex concurrency issues

Summary
Designed a directed synthesis of failing concurrent executions

Integrates testing, symbolic execution and static analysis

Validated on 10 well tested and popular Java classes

Detected 31 crashes .

Resulted in fixes (includes classes in JDK 8)

Total time for analyzing all classes is approximately 23
minutes

Maximum nested path conditions: 11, stack depth: 6

