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Makes building multithreaded applications easier 



Building multi-threaded libraries



Building multi-threaded libraries

Class under 
construction



Building multi-threaded libraries

Class under 
construction



Building multi-threaded libraries

Class under 
construction

Need to handle various issues  
associated with multithreading



Building multi-threaded libraries

Class under 
construction •  Functionality 

•  Performance 
•  Concurrency 
•  Modularity 
•  Data Structures 
•  Shared state 
•  Lock field correlation 
•    … 

Need to handle various issues  
associated with multithreading



Building multi-threaded libraries

Class under 
construction •  Functionality 

•  Performance 
•  Concurrency 
•  Modularity 
•  Data Structures 
•  Shared state 
•  Lock field correlation 
•    … 

Need to handle various issues  
associated with multithreading



Building multi-threaded libraries

Class under 
construction •  Functionality 

•  Performance 
•  Concurrency 
•  Modularity 
•  Data Structures 
•  Shared state 
•  Lock field correlation 
•    … 

Need to handle various issues  
associated with multithreading



Building multi-threaded libraries

Class under 
construction •  Functionality 

•  Performance 
•  Concurrency 
•  Modularity 
•  Data Structures 
•  Shared state 
•  Lock field correlation 
•    … 

Need to handle various issues  
associated with multithreading



Building multi-threaded libraries

Class under 
construction •  Functionality 

•  Performance 
•  Concurrency 
•  Modularity 
•  Data Structures 
•  Shared state 
•  Lock field correlation 
•    … 

Need to handle various issues  
associated with multithreading



Building multi-threaded libraries

Class under 
construction •  Functionality 

•  Performance 
•  Concurrency 
•  Modularity 
•  Data Structures 
•  Shared state 
•  Lock field correlation 
•    … 

Need to handle various issues  
associated with multithreading



Building multi-threaded libraries

Class under 
construction •  Functionality 

•  Performance 
•  Concurrency 
•  Modularity 
•  Data Structures 
•  Shared state 
•  Lock field correlation 
•    … 

Need to handle various issues  
associated with multithreading



Building multi-threaded libraries

Class under 
construction •  Functionality 

•  Performance 
•  Concurrency 
•  Modularity 
•  Data Structures 
•  Shared state 
•  Lock field correlation 
•    … 

Need to handle various issues  
associated with multithreading



Class under 
construction •  Functionality 

•  Performance 
•  Concurrency 
•  Modularity 
•  Data Structures 
•  Shared state 
•  Lock field correlation 
•    … 

Building multi-threaded libraries



Class under 
construction •  Functionality 

•  Performance 
•  Concurrency 
•  Modularity 
•  Data Structures 
•  Shared state 
•  Lock field correlation 
•    … 

Building multi-threaded libraries

Simultaneously handling the issues 
can introduce bugs



Class under 
construction •  Functionality 

•  Performance 
•  Concurrency 
•  Modularity 
•  Data Structures 
•  Shared state 
•  Lock field correlation 
•    … 

Building multi-threaded libraries



Class under 
construction •  Functionality 

•  Performance 
•  Concurrency 
•  Modularity 
•  Data Structures 
•  Shared state 
•  Lock field correlation 
•    … 

Building multi-threaded libraries

Perform modular testing of various properties



Class under 
construction •  Functionality 

•  Performance 
•  Concurrency 
•  Modularity 
•  Data Structures 
•  Shared state 
•  Lock field correlation 
•    … 

Building multi-threaded libraries

Perform modular testing of various properties



Testing multi-threaded libraries

Class under 
construction



Testing multi-threaded libraries

Class under 
construction



Class under 
construction

Testing multi-threaded libraries



Class under 
construction

Client

Testing multi-threaded libraries



Class under 
construction

Client

Testing multi-threaded libraries



Class under 
construction

Client

• Invokes the APIs provided by the class. 

Testing multi-threaded libraries



Class under 
construction

Client

• Invokes the APIs provided by the class. 
• Exposes the broken contracts in the library. 

Testing multi-threaded libraries



Class under 
construction

Client

• Invokes the APIs provided by the class. 
• Exposes the broken contracts in the library. 
• Facilitates regression testing. 

Testing multi-threaded libraries
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Testing multi-threaded libraries
How many threads need to 
be created?

What methods need to be 
invoked?

What are the parameters to 
these methods?

What is the schedule that 
needs to be followed?

Challenges
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Story of the black box so far…

Randomized generation

Pradel and Gross, PLDI’12

Targeted generation
Samak and Ramanathan, 

OOPSLA’14

Samak, Ramanathan, Jagannathan 
 PLDI’15

Samak and Ramanathan,  
FSE’15

Crashes and Deadlocks

Deadlocks

Data races

Atomicity  
violations

Dynamic
Analysis
Engine

Need a targeted approach to 
reveal crashes
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Detecting crashes in a library requires:

Well designed multi-threaded clients

Specific thread interleavings

We propose MINION 
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Class under test

Random 
sequential test

Multi-threaded 
client

Thread 
interleaving

Crash

assert(p1)
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Execution synthesis
Target execution

C1

C2

C3

…

Random execution

C1

C2

C3

… The path can be 
sequentially infeasible
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Approach Overview
Static analysis 

targets: locate assertions to violate and updates to fields

derive path conditions to reach target instructions

Dynamic analysis 

obtain concrete data by executing provided tests

path conditions traversed, value of fields, etc

Constraint solvers 

encode path constraints, read-write constraints, lock constraints and parameter 
constraints using information from static and dynamic analysis

synthesize structure of new clients and schedules

Leverage the above components; iterate until target is reached
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• The execution does not crash 

Execution does not follow the plan 
proposed by static analysis
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Iteration - 2 : Concrete Execution

SOLVER UNSAT

STUCK!!

Updates seen on executed paths in m2, m3 
cannot negate C2; Use static analysis
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Iteration - 3 : Concrete Execution

Apply MINION for 
reaching this target
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Implementation

Built on top of the SOOT bytecode analysis 
framework

Used the Z3 constraint solver

Evaluated on open source Java libraries

Input sequential client: invoke each method 
in a class once with random objects
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Results

31 crashes due to concurrency
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Summary
Designed a directed synthesis of failing concurrent executions

Integrates testing, symbolic execution and static analysis

Validated on 10 well tested and popular Java classes

Detected 31 crashes .

Resulted in fixes (includes classes in JDK 8)

Total time for analyzing all classes is approximately 23 
minutes

Maximum nested path conditions: 11, stack depth: 6 


