
Directed Synthesis of Failing Concurrent Executions

Malavika Samak

IISc, Bangalore, India

malavika@csa.iisc.ernet.in

Omer Tripp ∗

Google Inc., Mountain View, USA

trippo@google.com

Murali Krishna Ramanathan

IISc, Bangalore, India

muralikrishna@csa.iisc.ernet.in

Abstract

Detecting concurrency-induced bugs in multithreaded li-

braries can be challenging due to the intricacies associated

with their manifestation. This includes invocation of mul-

tiple methods, synthesis of inputs to the methods to reach

the failing location, and crafting of thread interleavings that

cause the erroneous behavior. Neither fuzzing-based testing

techniques nor over-approximate static analyses are well po-

sitioned to detect such subtle defects while retaining high

accuracy alongside satisfactory coverage.

In this paper, we propose a directed, iterative and scal-

able testing engine that combines the strengths of static and

dynamic analysis to help synthesize concurrent executions

to expose complex concurrency-induced bugs. Our engine

accepts as input the library, its client (either sequential or

concurrent) and a specification of correctness. Then, it iter-

atively refines the client to generate an execution that can

break the input specification. Each step of the iterative pro-

cess includes statically identifying sub-goals towards the

goal of failing the specification, generating a plan toward

meeting these goals, and merging of the paths traversed dy-

namically with the plan computed statically via constraint

solving to generate a new client. The engine reports full re-

production scenarios, guaranteed to be true, for the bugs it

finds.

We have created a prototype of our approach named Min-

ion. We validated Minion by applying it to well-tested con-

current classes from popular Java libraries, including the lat-

est versions of openjdk and google − guava. We were able

to detect 31 real crashes across 10 classes in a total of 23

minutes, including previously unknown bugs. Comparison

with three other tools reveals that combined, they report

only 9 of the 31 crashes (and no other crashes beyond Min-

∗ This paper is the result of work that was done while the author was

employed by IBM Research.

ion). This is because several of these bugs manifest under

deeply nested path conditions (observed maximum of 11),

deep nesting of method invocations (observed maximum of

6) and multiple refinement iterations to generate the crash-

inducing client.

Categories and Subject Descriptors D.2.4 [Software

Engineering]: Software/Program Verification—Assertion

checkers; D.2.5 [Software Engineering]: Testing and

Debugging—Symbolic execution, Testing tools

Keywords Dynamic analysis; Client synthesis; Concur-

rency

1. Introduction

Ensuring the correct behavior of concurrent software is no-

toriously hard for developers to achieve via testing [33]. Of-

ten there are complex scenarios, leading to assertion viola-

tions or runtime exceptions, that fall outside the range of be-

haviors covered by testing. Offending executions typically

involve specific input values combined with nontrivial in-

terleaving scenarios [28]. Generating such executions to aid

bug detection is challenging.

At the same time, there are many available tools for de-

tection of potential concurrency bugs, such as data races [13,

45, 46] or atomicity violations [15, 37]. These tools, like

developer-written tests, often suffer from limited cover-

age [44]. Moreover, these tools enforce criteria that may or

may not correspond to the developer’s notion of correctness.

As an example, certain data races may be perceived as be-

nign [35].

In this paper, we focus on the specification of correct-

ness given by the developer either as assert statements or

as runtime exceptions (based on the throw statement in the

source code). The goal then is to detect, and report, concur-

rent execution scenarios that lead to such events, which are

clear violations of the contract put forward by the program.

We study this problem w.r.t concurrent Java libraries, whose

code may be executed in unexpected ways by client applica-

tions, thereby leading to runtime failures.

Illustrative example. Figure 1(a) presents class X, which

defines methods m1, m2 and m3. Method m1 contains an

assertion at line 8, which is nested within a condition. Vi-

olating this assertion requires a well crafted multi-threaded

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

OOPSLA’16, November 2–4, 2016, Amsterdam, Netherlands
c© 2016 ACM. 978-1-4503-4444-9/16/11...$15.00

http://dx.doi.org/10.1145/2983990.2984040

430

1 class X {
2 int x = 0;

3 Object f = null ;

4 void m1() {
5 i f (x > 5) {
6 i f (f == null)

7 f = new Object () ;

8 assert (f != null) ;

9 }}
10

11 void sync m2(int y) {
12 x = y ; . . .

13 x = 0;

14 }
15

16 void sync m3(Object o, int y) {
17 i f (y > 10)

18 f = o;

19 }
20 }

(a)

assert(f != null)

a.m2(6) a.m3(null, 11)a.m1()

lock(a)

x = y

x = 0;

unlock(a)

unlock(a)

lock(a)

f = o

if(y > 10)

if(x > 5)

f = new Object()

if(f == null)

t1 t2 t3

t1 t2 t3

(b)

Figure 1: Illustrative example. (a): Implementation of class

X. (b): The multithreaded test and its execution which vio-

lates the assertion.

test that not only ensures that the assertion is reachable but

also ensures the assertion is violated. One such test case

is depicted in Figure 1(b), where all three methods are in-

voked by distinct threads with appropriate parameters. The

first thread, t1, invokes method m1 on an instance of class X.

Thread t2 assists thread t1 to reach the assertion, and thread

t3 assists in failing the assertion. The threads have to follow a

specific interleaving for the assertion to fail. One such execu-

tion is presented in Figure 1(b), where the execution context

switches four times. The intricacies of this example capture

the complexities involved in synthesizing a failing execution

even for simple examples.

Existing approaches. Static analyses [3, 7, 26, 31] can re-

port potential assertion violations. Unfortunately, these bug

reports need to be validated manually for their correctness,

which can be a tedious task [27] due to the sheer number of

warnings.

Model checking techniques [14, 33] require the presence

of bug-exposing multithreaded tests. These tests are exe-

cuted and the large state space corresponding to distinct

schedules is explored to expose the assertion violation. For

example, in Figure 1(b), if a multithreaded test with three

threads, that makes appropriate invocations is provided, then

these techniques can explore the schedules to expose the

underlying assertion violation. Dynamic symbolic execu-

tion techniques [21, 29] also require the presence of mul-

tithreaded tests to detect bugs or their root causes.

A simple yet effective alternative to expose thread-safety

violations is to automatically generate random multithreaded

tests [38]. However, blind search is infeasible in practice due

to the magnitude of the search space and the subtle require-

ments to trigger the bug, as illustrated above. Synthesizing

tests to expose concurrency bugs [43, 44] does not provide

a systematic means to work through nested path conditions

and interleavings, and also suffers from false positives. For

instance, 25% of the 307 reported races in [44] are benign.

This motivates the design of a directed approach to syn-

thesize concurrent executions, even in the absence of care-

fully crafted multithreaded tests, such that error situations

are systematically searched for by the testing system.

Our approach. As an initial step toward directed detec-

tion of concurrency violations in library implementations,

we present Minion, a system that — to our knowledge —

is the first to simultaneously account for both the input and

the interleaving scenario in detecting, and demonstrating,

concurrency-induced errors. Both the input and the schedule

are essential for full reproduction of a bug, which also guar-

antees that all warnings reported by Minion are true warn-

ings. There are no false positives.

Minion tackles the inherent difficulty of forcing an un-

intended runtime violation under a concurrent schedule by

modeling this challenge as a planning problem. The goal

state is to reach a throw statement either due to an assertion

violation1 or due to an undeclared runtime exception. There

are multiple possible strategies toward this goal in general.

Minion, starts from the provided client (e.g., a unit test),

and iteratively refines it until either a preset budget is ex-

hausted or the target violation is triggered. The provided

client can be either a manually written test or generated us-

ing automatic test generators [16, 36]. The refinement steps

are driven by sub-goals (e.g., to satisfy the condition at line

5, line 12 needs to be executed), computed via static analysis

of the library’s code, that contribute toward the ultimate goal

of failing the assertion.

Minion utilizes three components: (i) static analysis to

identify (sub)goals toward the goal of failing the program;

(ii) concrete clients to iteratively refine according to new

goals; and (iii) constraint solving as a means to combine the

path traversed dynamically and the new goal set by the static

analysis. At each iteration, a client is executed; the static

analysis advises how to refine it; and a new client is synthe-

sized by modeling the current execution trace along with the

new refinement goal encoded as constraints, where inputs

and interleaving options are treated as free variables. This

process resumes until either the target error (or exception) is

triggered or testing budget is exhausted.

We defer technical details to future sections, and suffice

for now with an intuitive view of the process with reference

to the example in Figure 1. Minion accepts as input the im-

plementation of X and a client (e.g., a sequential test that

invokes the public class methods with random parameters).

Intuitively, the first goal is to reach the assertion. This leads

to the synthesis of a client involving both m1 and m2, in-

voked from two threads. This lets us visit the assertion, pro-

vided the value assigned at line 12 is greater than 5 and line

1 An assert b statement compiles into if (!b) throw . . . block.

431

Tool Scope Output SMT- Goal- Approach

based oriented

ConTeGe [38] Libraries Client programs+input No No Random client generation with linearizability checks

Omen [41] Libraries Client programs+input No Yes Targeted test generation for detecting deadlocks

Narada [44] Libraries Client programs+input No Yes Targeted test generation for detecting races

Intruder [43] Libraries Client programs+input No Yes Targeted test generation for detecting atomicity violations

ESD [53] Client programs Input+schedule Yes Yes Execution synthesis via static pruning of execution space

followed by symbolic execution

Cortex [30] Client programs Input+schedule Yes Yes Exploration of schedule dependent branches by

fuzzing the order of events and verifying feasibility

Minion Libraries Client programs+input+schedule Yes Yes Iterative test refinement using static analysis

and symbolic execution to generate crashing executions

Table 1: Comparison to related work.

5 reads this value. However, due to the object assignment

at line 7, the assertion is valid. The next goal, therefore, is

to find a means to set f to null. This leads to the invocation

of m3 from a separate thread in the client, as guided by the

static-analysis component. Further, the parameters provided

to m3 must ensure the reachability of the assign statement at

line 18, which may write a null value to field f. This value is

to be read by the assertion at line 8, and if this value is null,

then the assertion will be violated. Needless to say the thread

interleaving has to be monitored at every step to ensure that

appropriate values are read by relevant accesses.

Intuitively, the above reasoning process — whereby the

client is executed dynamically; static analysis guides its re-

finement; and hybrid constraints, stemming from both the

concrete execution trace and the static analysis, are solved

to synthesize the next client — is the essence of our ap-

proach. This hybrid mode of reasoning, combining static and

dynamic analysis in forming the constraints, is a means to

tackle classic limitations of both methods in achieving both

high coverage and absence of false warnings.

We have experimented with Minion on 10 well-tested

classes from 7 popular Java libraries, including the lat-

est versions of openjdk and google guava. The results

are highly promising. We have been able to detect 31

concurrency-induced bugs, including previously unknown

bugs,2 within approximately 23 minutes. In contrast, exist-

ing approaches [38, 43, 44] are able to cumulatively detect

only 9 bugs.

Contributions. The paper makes the following principal

contributions:

• We propose a novel design for synthesizing concurrent

executions with the goal of triggering unexpected errors,

under nested path conditions and thread interleavings, by

iteratively refining concrete execution traces.

• We provide detailed description, and explanation, of the

algorithms underlying our system and how they inter-

2 Bugs reported in a few JDK classes have been fixed – http://bugs.

java.com/view_bug.do?bug_id=8143394. Another bug reported

by us generated considerable discussion and is marked as a documentation

bug.

lock. These include runtime monitoring to record the

trace, static analysis to identify the intermediate goals

towards failing an assertion, as well as use of symbolic

constraints extracted from the concrete trace to generate

new executions that satisfy pending goals.

• We validate the efficacy of our approach by analyzing

real-world concurrent Java classes, including classes de-

clared explicitly to be thread safe. Minion detects 31

concurrency-induced bugs, including confirmed defects

in popular libraries that were previously unknown.

2. Related Work

There has been significant amount of work in the area of

detecting concurrency bugs. Our approach is distinguished

from other approaches as we are able to synthesize a fail-

ing execution without requiring bug-exposing multithreaded

tests or other artifacts like crash dumps as input. Existing

directed multithreaded test generation techniques [43, 44]

do not consider path conditions and thread interleavings to

expose failing executions. We discuss relevant areas of re-

search in turn. In Table 1, we summarize the most closely

related tools to Minion, and contrast them with our approach.

Generating multithreaded tests. ConTeGe [38] introduces

a testing technique, whereby the generated tests share a

common prefix, such that the same class-under-test (CUT)

instance is defined for multiple concurrent tasks launched

simultaneously. This source of sharing exposes bugs that

might be missed otherwise. Additionally, there is an oracle

that automatically decides if the observed behavior (crash,

deadlock, etc) is a bug based on whether the behavior could

still be triggered given any linearization of the involved calls.

Our approach does not employ randomization techniques but

performs goal-driven iterative test refinement, where we ac-

count for multiple shared data structures. As our experimen-

tal study indicates, taking these additional steps is of signif-

icant practical value.

ConSuite [47] generates unit tests for concurrent classes

and attempts to ensure good coverage by exploring differ-

ent schedules. The magnitude of the search space affects

the scalability of these approaches. To address this prob-

lem, concurrency-bug-driven multithreaded test synthesis

432

http://bugs.java.com/view_bug.do?bug_id=8143394
http://bugs.java.com/view_bug.do?bug_id=8143394

tools [43, 44] are proposed. However, as discussed earlier,

handling complex failure scenarios efficiently and accurately

is beyond the reach of these approaches.

Constraint-solving-based approaches. Several elegant

techniques [20, 25, 28, 30] based on dynamic symbolic

execution have recently been proposed that leverage con-

straint solving. Huang et al., [20] propose an approach for

replaying multithreaded executions to reliably reproduce

concurrency bugs by recording thread-local execution paths

online and encoding execution constraints (e.g. memory

order, read-write constraints, etc). Light [25] performs

additional optimizations based on intra-thread and inter-

thread flow dependencies to perform thread-local recording.

Symbiosis [28] reorders events in a failing schedule to pro-

duce an error-free schedule, and reports the ordering/flow

differences to aid debugging. Broadly, these approaches

employ constraint solving to reproduce a bug or to detect

its root cause. In contrast, we use constraint solving to

construct crash-inducing clients.

In Cortex [30], the order of events from the initial non-

failing concurrent execution of a program is perturbed, by

using heuristics such as flipping branches near the asser-

tion, to influence schedule-dependent branches. The feasibil-

ity of the modified execution is verified using an SMT solver.

Though our approach also leverages a concrete trace to mu-

tate in each iteration, there are two key differences. First,

our approach targets libraries, and therefore needs to handle

data in the form of parameter, variable and field values. Sec-

ond, our approach is guided by goal refinement rather than

locality-based heuristics.

Dynamic analyses and testing. Several different analyses

have been proposed that monitor the execution to report data

races [8, 13, 24, 45, 46, 48], deadlocks [23, 42] and atomic-

ity violations [4, 15, 37]. However, such bugs might not vio-

late the developer’s notion of correctness [35]. Portend [24]

is used for detection and classification of data races to ana-

lyze the effect of a bad behavior after the fact. Adversarial

scheduling approaches [11, 12] employ constraint solving to

detect data races and deadlocks in an application. Needle-

Point [34] systematically explores schedules to detect con-

currency bugs. Testing frameworks [22, 40] enable the tester

to specify a schedule for carefully crafted tests. Minion inte-

grates nicely with these frameworks via the client programs

it generates.

Model checking. Model checking is used to verify a given

specification, and has been successfully adapted to verify

concurrent software [14, 19, 33]. Chess [33] is a model

checking tool that explores possible schedules to expose

concurrency bugs. Flanagan and Godefroid [14] employ

partial order reduction to verify multi-threaded programs.

Huang [19] proposes an approach to explore the state space

with a minimal number of executions. All of these ap-

proaches require the presence of effective multithreaded tests

as input.

Solutions based on planning. The objective of ESD [53]

is to automatically reproduce crashes in closed programs.

This approach explores executions of the target system using

a symbolic execution engine (Klee [5]), where static analysis

is performed to identify critical control flow edges necessary

to reproduce a failure. This reduces the space of possible ex-

ecutions. Other heuristics are enabled at runtime to prioritize

the selection of candidate executions. There are key differ-

ences from our approach. Conceptually, Minion iteratively

refines a particular trace, whereas ESD begins from the set

of all possible executions and applies pruning. An advantage

of our approach is that we make careful and selective use of

static analysis, thereby steering away from its inherent limi-

tations. Beyond that, our approach drives execution towards

a crash without prior knowledge of faults in the library, and

in particular, without relying on crash-dump information.

In the area of testing, XssAnalyzer [50] is a feedback-

driven algorithm for detection of cross-site scripting (XSS)

vulnerabilities in websites. It refines the test according to

feedback from previous failed attempts to penetrate the web-

site’s defenses. In the area of code synthesis, Prountzos et

al. [39] describe a system, based on automated planning, to

synthesize efficient concurrent implementations of graph al-

gorithms that are provably correct.

Automatic sequential test generation. In their seminal

work, Godefroid et al. [18] propose concolic testing, inte-

grating symbolic execution with concrete trace information

to enhance path coverage and expose bugs in sequential pro-

grams. This is further extended to handle inter-procedural

testing [17]. Klee [5] demonstrates the practical impact of

automatic test generation on previously well-tested libraries.

The Exe tool [6] embodies a comprehensive approach to de-

tect bugs by tracking symbolic constraints on memory accu-

rately. Many automatic test-generation tools [16, 36, 49] for

Java utilize feedback from generated tests. Dsdcrasher [9]

runs a combination of static and dynamic analyses to au-

tomatically crash sequential programs. Our approach is in-

spired by the effectiveness of these tools, and in particular

by the benefits enabled by hybrid reasoning, and is geared

towards detecting concurrency bugs.

3. Technical Overview

In this section, we walk the reader through a high-level

overview of the Minion system with the help of an example.

3.1 The Minion Architecture

Figure 2 presents the Minion architecture. The Minion work-

flow assumes as input (i) a concurrent library, (ii) one or

more clients of the library (themselves either sequential or

concurrent) to be processed serially and (iii) a specification

of correctness in the form of an assert (or throw) statement.

433

Each iteration of the testing process then consists of three

steps:

Constraint

Generator

Scheduler Client Generator

SMT Solver

Target Generator

Solution

Unsat constraints

Recent client,
Schedule Schedule

Constraints

Targets
path to
target

Client,

Schedule,

Exception

New client,

Planner

1
2

6’

5

5’

7

4

trace

6

3

Target Assert
Library, Client,

Figure 2: Architecture of Minion. The edge numbers 1. . .7

represent the workflow. 5’,6’ is an alternate path to 5,6. The

loop 2. . . 6 can execute multiple times.

1. running the current test (initially the provided client);

2. assuming the test fails to trigger the error, computing a

target goal for the test to satisfy in the next iteration; and

3. revising the test to meet that goal.

These steps fall under the responsibility of the components

described below.

Runtime execution of the client is governed by the sched-

uler component, which runs the given client by following the

specified schedule. (Initially the schedule is unconstrained.)

The resulting execution trace is recorded for processing by

the constraint generator, which extracts from it relevant con-

straints such as the order of execution of certain statements.

Further constraints are obtained through the planner. The

planner examines the trace, and decides how to revise it such

that progress is made towards reaching the target goal. The

planner computes the path conditions leading to the given

progress goal and stipulates that these are met.

In sum, the constraint generator accepts as its specifica-

tion (i) the execution trace, as well as (ii) the goal-directed

requirements computed by the planner, and encodes these as

a constraint system. The resulting constraints are then dis-

charged to an off-the-shelf constraint solver.

A solution to the constraints is, in essence, an in-

put/schedule configuration that is guaranteed to generate an

execution trace meeting the goal put forward by the plan-

ner. The client generator uses this solution, plus the most

recently generated client, to create a fresh client. Failure to

find a solution for the constraint system results in the genera-

tion of alternative targets (or sub-goals) by the target genera-

tor. If the target generator fails to find such a target, then the

solving loop is reset to enable pursuit of another plan. The

solving process proceeds until either the target is reached or

a predetermined testing budget is exhausted. Upon success-

fully reaching the target, the refined client and its associated

schedule are output by our system.

This style of reasoning is not complete, yet it is fully

sound. That is, any warning reported by Minion is guaran-

teed to be true.

3.2 Illustrative Run

Figure 3 illustrates the dynamics of Minion on a running ex-

ample, which we shall use throughout the rest of the paper.

It presents the class under test X, the input test p0, and the

tests p1, p2, p3 generated by Minion. The generated part of

the tests is demarcated in the figure. For ease of presentation,

we skip the code corresponding to the creation of multiple

threads as well as for object sharing across threads. Meth-

ods that need to be executed by newly created threads are

also specified. The remaining instructions including the code

given in the input test are executed by a default main thread.

The schedule presented below each test in the figure spec-

ifies the scheduling constraints that need to be followed. For

example, (t2, 12), (t1, 5) means that line 5 can only be exe-

cuted by thread t1 after line 12 is executed by thread t2. We

now discuss the application of Minion to X.

Here, the class under test X consists of methods m1

through m3, and the client is the (sequential) p0 method.

The first step in applying Minion is to identify the f ! = null

assertion at line 8 as the primary target. This is either done

by the planner or can be an input given by the developer.

In the first iteration, the (sequential) p0 method is exe-

cuted. The execution skips the body of the condition at line

5, which the planner identifies as necessary to reach the as-

sertion. Hence, a goal is defined to have x > 5 at line 5. The

constraint generator uses this goal and the observed trace

to generate the appropriate constraints. Feeding these con-

straints into the solver, where inputs and interleavings are

modeled as free variables, yields a concurrent variant of p0,

such that

• from the schedule perspective, the executions of m1 and

m2 are interleaved with the body of m1 occurring in be-

tween x = y and x = 0; and

• from the input perspective, the argument to m2 is 6 rather

than 0, and m1 and m2 are now invoked on the same

receiver object (s1).

The resulting client, p1, is shown in Figure 3(c). The exe-

cution of the client with the schedule is shown in Figure 4(a).

It reaches the assertion, but there is no violation of the asser-

tion. Thus, a new goal is defined, which is to reach line 8

such that f ≡ null. Minion thus searches for an alternative

goal, which is identified as the field assignment statement at

line 18. The corresponding constraint is y > 10. Hence, the

current version of the client is revised further to concretely

expose a different assignment to the field f, such that from

434

1 class X {
2 i n t x = 0;

3 Object f = nul l ;

4 void m1() {
5 i f (x > 5) {
6 i f (f == nul l)

7 f = new Object () ;

8 asser t (f != nul l) ;

9 }}
10

11 void sync m2(i n t y) {
12 x = y ; . . .

13 x = 0;

14 }
15

16 void sync m3(Object o , i n t y) {
17 i f (y > 10)

18 f = o ;

19 }
20 }

(a)

I t e r a t i o n 1 :

p0 () {

/∗ i npu t t e s t ∗ /

X a = new X () ;

X b = new X () ;

a .m1 () ;

b .m2(0) ;

a .m3(b , 0) ;

}

Schedule :

N i l

(b)

I t e r a t i o n 2 :

p1 () {

/∗ i npu t t e s t ∗ /

X a = new X () ;

X b = new X () ;

a .m1 () ;

b .m2(0) ;

a .m3(b , 0) ;

/∗ generated pa r t ∗ /

X s1 = new X () ;

/∗ set up threads

t1 , t2 ∗ /

. . .

/∗ execute i n t1 ∗ /

s1 .m1 () ;

/∗ execute i n t2 ∗ /

s1 .m2(6) ;

}

Schedule :

(t2 , 1 2) , (t1 , 5) , (t2 ,13)

(c)

I t e r a t i o n 3 :

p2 () {

/∗ i npu t t e s t ∗ /

X a = new X () ;

X b = new X () ;

a .m1 () ;

b .m2(0) ;

a .m3(b , 0) ;

/∗ generated pa r t ∗ /

X s1 = new X () ;

X s2 = new X () ;

X s3 = new X () ;

/∗ set up threads

t1 , t2 , t3 ∗ /

. . .

/∗ execute i n t1 ∗ /

s1 .m1 () ;

/∗ execute i n t2 ∗ /

s1 .m2(6) ;

/∗ execute i n t3 ∗ /

s2 .m3(s3 , 1 1) ;

}

Schedule :

(t2 , 1 2) , (t1 , 5) , (t2 ,13)

(d)

I t e r a t i o n 4 :

p3 () {

/∗ i npu t t e s t ∗ /

X a = new X () ;

X b = new X () ;

a .m1 () ;

b .m2(0) ;

a .m3(b , 0) ;

/∗ generated pa r t ∗ /

X s1 = new X () ;

/∗ set up threads

t1 , t2 , t3 ∗ /

. . .

/∗ execute i n t1 ∗ /

s1 .m1 () ;

/∗ execute i n t2 ∗ /

s1 .m2(6) ;

/∗ execute i n t3 ∗ /

s1 .m3(null , 1 1) ;

}

Schedule :

(t2 , 1 1) , (t2 , 1 2) , (t1 , 5) ,

(t2 , 1 3) , (t2 , 1 4) , (t1 , 7) ,

(t3 , 1 6) , (t3 , 1 8) , (t1 , 8)

(e)

Figure 3: Illustrative example. (a): Implementation of class X. (b): p0 is an initially provided client that invokes methods in

X. (c): p1 is an intermediate client, constrained by schedule shown below it, where t1 satisfies conditional at line 5. (d): p2 is

an intermediate client where t3 exposes the write at line 18. (e): p3 is the final multithreaded client that exposes an assertion

violation at line 8 when the schedule shown below it is followed. In (c), (d) and (e), the code for creation of threads and passing

the relevant objects to them is elided for ease of presentation.

the input perspective, m3 is invoked with 11 as its second

argument.

The resulting client, p2, is shown in Figure 3(d). The

corresponding execution is given in Figure 4(b). It exposes

the write at line 18, but does not necessarily push toward

the assertion violation at line 8 because the field write is on

a different object (s2) and the assignment is non null. This

is because the solver is not constrained yet to use the same

receiver object for m3 as is used for m1 and m2. Thus, the

client is revised further, such that

• from the schedule perspective, the execution of m3 is

interleaved in between lines 7 and 8; and

• from the input perspective, m3 is invoked with null as its

first parameter on the same receiver object (s1) as in t1 and

t2.

The revised client p3, shown in Figure 3(e) when executed

on the generated schedule appearing below it, induces an

assertion violation. This corresponds to the execution shown

in Figure 1(b).

In summary, given an implementation of a class X and an

initial client p0, Minion is able to generate a client p3 along

with a schedule that exposes an assertion violation in X.

x = 0

unlock(s1)f = new Object()

assert(f != null)

if(f == null)

lock(s1)

if(x > 5)

but does not violate it.

Execution : Reaches the assertion

Iteration 2

x = y // y = 6

t1 t2

(a)

x = 0

unlock(s1)f = new Object()

assert(f != null)

if(f == null)

lock(s1)

x = y

if(x > 5)

Execution : Reaches the assertion but does

Iteration 3

//y = 6

// o = s3

lock(s2)

if(y > 10)

f = o

unlock(s2)

not violate it. Exposes a write access to f.

t1 t2 t3

(b)

Figure 4: Execution of clients for illustrative example.

Shaded region denotes operations on a different object.

4. Design

We now discuss in detail the design of our approach, and

elaborate on the various components. The main analysis

algorithm accepts as input a program p0 as well as an initial

target tgt0. The target is a throw statement to be visited,

which — as noted above — also covers assertions.

435

The program p0 is the provided client that invokes library

methods. For ease of explanation, we consider each library

method invocation by p0 to be from a distinct thread. In

this setting, given a sequential program p0, we treat p0 as

the serial composition of different threads that each execute

a different library call. For instance, the sequential client

shown in Figure 3(b) can be seen as invoking m1, m2 and

m3 via three distinct threads; the execution is ordered by the

scheduler, such that first m1 executes, then m2, and finally

m3.

Algorithm 1 The Minion algorithm

1: procedure Solve(p0, tgt0)

2: TS← [tgt0] ⊲ initialize target stack

3: p← p0; s← initial order

4: while has budget do

5: τ← Execute(p, s) ⊲ Execute program/schedule pair

6: ([t 7→ ρ], fin)← Plan(p, τ, top(TS)) ⊲ set per-thr. pc.s

7: φ← Encode(p, τ, [t 7→ ρ]) ⊲ encode as constraints

8: (p′, s′)← CSolve(φ, p) ⊲ invoke solver

9: if (p′, s′) = ⊥ then ⊲ solver failure

10: tgt← NextTgt(p, τ, top(TS))

11: if tgt = ⊥ then ⊲ no new target⇒ dead end

12: TS← [tgt0] ⊲ reset target stack

13: (p, s)← (p0, initial order) ⊲ reset (p, s)

14: else

15: TS← TS :: tgt ⊲ push subgoal onto stack

16: end if

17: else

18: (p, s)← (p′, s′) ⊲ update program/schedule pair

19: if fin then

20: TS← pop(TS) ⊲ target was satisfied

21: end if

22: if TS = [] then ⊲ TS is empty⇒ tgt0 has been met

23: return (p, s) ⊲ success!

24: end if

25: end if

26: end while

27: return ⊥

28: end procedure

4.1 The MinionMain Loop

Algorithm 1 presents the main loop that iterates until it ei-

ther succeeds in meeting tgt0 (line 23), or it runs out of

budget (loop test). We generally denote failure by a ⊥ re-

turn value (line 27). Within a given iteration, the current pro-

gram/schedule pair is executed using the procedure Execute

to obtain a trace τ. That trace, together with the program p

and the current target represented by the top of the target

stack (TS), are fed into the planning procedure Plan.

The Plan procedure outputs a specification containing the

path conditions that each thread should traverse. fin denotes

whether the current target is achieved. This is not necessar-

ily the case, since Plan may form the specification w.r.t. the

current trace τ, which may not reach the current target (e.g.,

the trace obtained by executing p0 in Figure 3(b)). We re-

turn to Plan below, in Section 4.3. For now, we note our

assumption that Plan is non-deterministic. That is, given a

program p, trace τ and target tgt, Plan chooses nondeter-

ministically between the available plans. This is important

as a mechanism to enable fail/retry progress as is explained

subsequently.

The next two steps are to encode the specification as set

φ of constraints (via Encode) and then discharge φ to a con-

straint solver (the CSolve procedure). If the solver fails to

synthesize a program/schedule pair meeting the specifica-

tion (i.e., if tgt = ⊥), then a sub-goal is selected that is

speculated to facilitate satisfaction of the current target (via

NextTgt).

If this attempt fails, then we perform full backtracking.

The solving loop is restarted with (i) a fresh target stack

including only tgt0 (line 12) and (ii) the original program p0

together with the initial ordering (line 13) that is dependent

on the provided client. Here, the non-deterministic contract

of Plan enables (if possible), with non-zero probability, a

different unfolding of the refinement process.

Alternatively, if the solver succeeds, then the new pro-

gram/schedule pair (p′, s′) is fixed as the current pair (line

18). Furthermore, if this pair satisfies a plan that meets the

corresponding target (i.e., fin is true), then that target has ef-

fectively been satisfied, and consequently it is removed from

the target stack (line 20).

If the target stack becomes empty, then the main analysis

loop has terminated successfully. Otherwise, we loop back

to line 5 to execute the revised program/schedule pair, such

that the resulting trace τ should bring us closer to the current

target, and so ultimately towards a true value for fin.

In the following subsections, we dive into the procedures

invoked by the main loop. These are Execute, Plan, Encode,

CSolve and NextTgt. We discuss each of them in detail.

4.2 The Execute Procedure

Algorithm 2 clarifies how we execute the program p under a

specified schedule s. The schedule is simply a queue spec-

ifying the dependencies among the instructions of different

threads.

A random thread from the active set of threads is selected

to execute (line 4), and the next instruction from that thread

is identified (line 5). If the thread/instruction pair is present

in the schedule s, denoting dependencies pertaining to its

execution, then we ensure that the pair is in the front of

the queue (line 7) so that all the instructions it depends on

have already been executed. Accordingly, the instruction is

executed and the pair is removed from s (lines 8 and 9).

On the other hand, if it is not in the front of the queue,

then some dependencies still remain to be executed. There-

fore, we move the thread to blocked (line 12). Moreover,

other instructions from the same thread in s that occur be-

fore the instruction under consideration, due to program or-

der (represented using ≺ in the algorithm), are also removed

from s (line 11).

436

Algorithm 2 The Execute procedure

1: procedure Execute(p, s)

2: blocked ← ∅; active← all threads

3: while active ∪ blocked is not empty do

4: t ← pick randomly from active

5: instr ← next instruction from t

6: if (instr, t) ∈ s then

7: if (instr, t) = front(s) then

8: Execute instr

9: s← s − {(instr, t)}

10: else

11: s← s − {(x, t) | (x, t) ≺ (instr, t)}

12: Move t from active to blocked

13: end if

14: else

15: Execute instr ⊲ unconstrained by s

16: end if

17: (x, t′)← front(s)

18: Ensure t′ is in active

19: end while

20: end procedure

Note that not all path conditions can be modeled by the

constraint solver, and so the client might diverge from its in-

tended path according to Plan. If this happens, then instruc-

tions that were scheduled to execute but were skipped due to

the path change are simply removed, while instructions from

other branches are simply executed unconstrained (line 15).

Subsequently, we make sure that the thread at the front of

s is in active so that it can be scheduled. The generated trace

(τ) is used by subsequent procedures.

Illustration. In the running example, the Execute proce-

dure is invoked in each of the four iterations. In the first iter-

ation, it receives the sequential client p0 and an empty sched-

ule, depicted in Figure 3(b) . The execution of this client will

be unconstrained by Execute, as the schedule is empty. In

the second iteration, Execute receives a non-empty schedule

and a multi-threaded client p1, depicted in Figure 3(c). Both

threads t1 and t2 are allowed to execute freely until the rel-

evant instructions in m1 and m2 are executed. When thread

t1 attempts to execute the instruction at line 5, the Execute

procedure checks if thread t2 has executed the instruction at

line 12. If thread t2 is yet to execute this instruction, thread

t1 will be blocked until thread t2 executes it. Similarly when

thread t2 attempts to execute the instruction at line 13 it will

get blocked if thread t1 has not yet executed the instruction

5. Threads are allowed to execute an instruction without any

checks if the instruction is not part of the schedule. For in-

stance, thread t1 is allowed to execute the instructions at line

6,7 and 8 freely. The executions of the clients in the third

and fourth iterations happen in a similar manner.

4.3 The Plan Procedure

As explained earlier, the functionality carried out by Plan

is to decide which path (or rather, path prefix) should be

followed by each of the threads. Plan returns a pair. The

first component is the mapping from threads to branching

decisions, except that the first incorrect branching decision

made by the thread being driven to a target is now negated.

The second component is fin. We provide a pseudo-code

description of this procedure in Algorithm 3.

The first step is to partition the input trace τ by thread

identifiers (line 2), such that each thread t incident in τ is

mapped to the sequence of branching decisions it executed.

Subsequently, we identify (at line 3) the thread t′ that is

assigned to reach the target as well as the method invocation

containing the target.

Algorithm 3 The Plan procedure

1: procedure Plan(p, τ, tgt)

2: T ← [t 7→ pc (τ, t)] ⊲ partition pc.s by threads

3: t′ ← thread[tgt]; m← method (tgt)

4: ρ1...n ← reach (m, tgt) ⊲ statically derive pc.s

5: if ρ1...n @ T [t′] then ⊲ not a subsequence in trace

6: Find min i in [1 . . . n] s.t ρ1...i−1.¬ρi ⊑ T [t′]

7: ρt′ ← prefix (T [t′], i) ⊲ get prefix from trace

8: return (T [t′ 7→ ρt′ .ρi], false) ⊲ flip cond at i

9: end if

10: return (T, true)

11: end procedure

If there is no such previous assignment (e.g., in the first

iteration), then we use static analysis to identify the method

containing the target, and obtain the thread(s) invoking the

method. Among this set, we choose a thread that is unas-

signed for other purposes. This thread is assigned the respon-

sibility to reach its respective target, in future iterations. In

the running example, thread t1 is responsible for reaching

the assertion violation at line 18 from the second iteration

onwards.

We use static analysis to specify the path conditions

ρ1 . . . ρn that are necessary to reach the target tgt in m at

line 4. For brevity, we use the notation ρ1...n to mean ρ1 . . . ρn.

The static analysis employed here is a naive (control) reach-

ability analysis that elides precise static reasoning about path

conditions.

If the set of conditionals is a sub-sequence of the trace

corresponding to t′ (denoted ρ1...n ⊑ T [t′]), then the target

is already reachable. We use sub-sequence for comparison

because there can be conditionals in the concrete trace that

can take any value and do not affect reachability of the target.

In this case, we return the specification T with the fin flag

set to true (at line 10).

Otherwise, if the path conditions are not a sub-sequence,

then we find the minimum i, such that the branching deci-

sions made by t′ up to ρi−1 form the prefix of a path leading

437

to the current target. The subsequent sequence of condition-

als (ρi . . . ρn) is not currently satisfied, and ρi is the earli-

est point starting from which execution diverges away from

the target tgt. We obtain the prefix of conditionals from the

trace for t′ upto, but not including, ρi (at line 7).

Here, the prefix (ρt′) includes conditionals along the path

to the target that do not affect its reachability (i.e., the tar-

get is reachable independent of the evaluation of the condi-

tional). We enforce this so that future iterations of the client

traverse previously executed paths to reach the target. Other-

wise, following a different path towards the target can mod-

ify the data values, which can adversely affect key condition-

als along the path leading to the target.

The specification for t′ is ρt′ concatenated with the flipped

conditional, ρi. The fin flag is set to false.

Illustration. The Plan procedure provides the necessary

specifications that can be used by the Encode procedure. We

illustrate the working of Plan in the first iteration. After the

sequential client p0 completes its execution, the Plan pro-

cedure is invoked. The initial target, which is the assertion

violation at line 8, and the trace corresponding to the execu-

tion of p0 are the inputs to Plan in the first iteration.

As a first step, Plan checks whether a thread has been

assigned to reach the target. Since this is the first attempt to

reach the target, there are no assignments. Therefore, Plan

assigns a new thread t1 to reach the target. Next, it identifies

that the execution of p0 diverged away from the target at line

5 in class X. Therefore, it specifies that the corresponding

condition needs to be flipped by the new thread t1 (lines 5–8

in the algorithm). This specification is returned to the main

algorithm. The job of generating the relevant constraints,

solving them and generating a refined client is performed

by the other components.

4.4 The Encode Procedure

The Encode procedure accepts as input the current client p,

the trace τ obtained by executing the program according to

the given schedule and the specification returned by the Plan

procedure. It is assigned the task of returning the constraints,

which are used by subsequent procedures to refine the client

suitably.

Encoding of the constraints is broadly based on earlier ap-

proaches [20, 28, 52] that are used to debug/reproduce a fail-

ing concurrent execution. However, unlike these approaches,

our goal is to enable synthesis of a failing concurrent ex-

ecution. In comparison to MCR [19], which employs con-

straint encoding to synthesize a failing execution for closed

programs based on specific thread schedules, our approach

needs to handle other challenges: (a) we need to encode path

conditions to enable branching, and (b) we need to fix the

parameters to public methods invoked by the library client

(without the context that closed programs provide to con-

strain such parameters). These are key differences in the re-

quirements from our analysis.

Most importantly, operations (read, write, lock) can be

performed on distinct memory locations, and our analysis

should recognize the possibility of these locations alias-

ing. Also, the final (crashing) execution may involve more

threads than the initial client (i.e., the system should support

synthesis of concurrent executions with more threads than

observed). Moreover, the current execution might not cover

the required targets. Based on the input from the planner,

the constraint system should generate constraints that can be

used to generate new clients that are able to make progress

towards the target. These challenges need to be handled by

the Encode procedure.

Symbolic Trace. Initially, a symbolic trace of the events

while executing a library method is recorded. We use the

concurrent SSA form [52], a variant of the classic SSA

form [32], to distinguish the variables in the execution. We

use this form to account for the fact that reads need not

flow from the latest write in the control flow, but can flow

from writes unrelated to the flow due to concurrency. For

instance, in Figure 3, x at line 5 in m1 can be defined by

the assignments in m2. Consequently, fresh symbolic values

are assigned to these reads. Unlike classic SSA, the concur-

rent SSA form necessitates the fresh assignments to handle

concurrency. Note that the recorded trace provides concrete

points-to information, based on which we determine aliasing

between memory locations precisely.

Instruction Action

X a = new X() -

X b = new X() -

m1() e1 : this0@0 7→ p0, this0.x0@0 7→ p1,

this0. f0@0 7→ p2

if(x > 5) e2 : this0.x1@0 ≤ 5

m2(int y) e3 : this0@1 7→ p3, this0.x0@1 7→ p4,

this0. f0@1 7→ p5, y0@1 7→ p6

lock(this) e4 : lock(this0@1)

x = y e5 : this0.x1@1 = y0@1

x = 0 e6 : this0.x2@1 = 0

unlock(this) e7 : unlock(this0@1)

m3(Object z, int y) e8 : this0@2 7→ p7, this0.x0@2 7→ p8,

this0. f0@2 7→ p9, z0@2 7→ p10,

y0@2 7→ p11

lock(this) e9 : lock(this0@2)

if(y > 10) e10 : y0@2 ≤ 10

unlock(this) e11 : unlock(this0@2)

Figure 5: Symbolic trace.

Figure 5 presents the symbolic trace generated for the ex-

ecution of the initially provided (sequential) client. We use

the notation varversion@id to denote the symbols in the trace.

It specifies the version of var in the method invocation repre-

sented by id. For example, this0.x1@0 corresponds to read-

ing version 1 of variable x at line 5, where the invocation

identifier (of m1) is 0. Every update to the variable incre-

ments its version number.

The variables given by ei and pi are free variables and cor-

respond to the event identifiers and the parameters supplied

438

to the invocation. Event identifiers are free variables that can

enable appropriate scheduling. Parameters are free variables

to capture the open-world setting and enable passing of rel-

evant objects as parameters to the invocations in the newly

generated client.

Also, a careful reader will notice that even though the

receivers for m1 and m3 are the same, they are given dif-

ferent identifiers (this0@0 and this0@1). This is because, as

discussed in the beginning of Section 4, we consider each

library method invocation in the provided client to originate

from a distinct thread.

Goal Constraints. The overall set of generated constraints

is given by φ and is defined as:

φ = φpath ∧ φsync ∧ φpo ∧ φrw ∧ φparam

Here, φpath encodes the partial control flow of different

threads as specified by the Plan procedure; φsync corresponds

to the constraints related to the synchronization operations;

φpo specifies the program ordering; φrw encodes the relation-

ships between the reads and writes based on potential share-

ability; and φparam provides the constraints pertaining to the

invocation parameters. We now describe each subgroup of

constraints in detail.

Path Constraints. The Plan procedure provides a specifi-

cation that maps each thread to a set of path conditionals.

We encode this as part of the path constraints φpath. In the

current trace τ, we observe that this0.x1@0 > 5 does not

hold (see e2 in Figure 5). Since, the Plan procedure specifies

that this condition needs to be flipped, we flip this constraint

accordingly. Path constraints pertaining to other threads are

unmodified (e.g., y0@2 ≤ 10). The generated path constraint

for the running example is encoded as follows:

φpath = (this0.x1@0 > 5) ∧ (y0@2 ≤ 10)

Synchronization Constraints. Lock operations in the trace

can be on different objects. However, we have to consider

the possibility of the objects aliasing. Therefore, for any pair

of lock operations, when the lock objects alias, we impose

an additional constraint in the form of mutual exclusion of

respective critical sections. That is, we impose an ordering

between unlock and lock operations. For the running ex-

ample, lock objects in m2 and m3 are specified symbol-

ically as this0@1 and this0@2 respectively. These are ei-

ther not aliased or the corresponding unlock and lock op-

erations need to be ordered. The generated synchronization

constraint for the running example is encoded as follows:

φsync = (this0@1 , this0@2) ∨ (e11 < e4 ∨ e7 < e9)

Program Order Constraints. These constraints capture the

ordering of the various instructions in the execution trace.

Since each library method invocation is from a distinct

thread, we need to order the events within an invocation

only. The generated constraint φpo for the running example

is given as follows:

φpo = (e1 < e2) ∧ (e3 < e4 < e5 < e6 < e7)

∧ (e8 < e9 < e10 < e11)

Read-Write Constraints. Read and write operations in the

original/generated clients can apply to distinct concrete loca-

tions. However, our approach has to also consider that these

operations may be performed on the same object. Hence,

we pair the object dereferences in the symbolic trace with

appropriate writes. The pairing is derived based on the ac-

cessed field. Further, each such pairing should also ensure

appropriate ordering of the events such that there is no other

intermediate write to the same location. These details are en-

coded in φrw. A partial listing of the generated constraints for

our running example is as follows:

φrw = ((this0.x1@0 = this0.x1@1) ∧ (e5 < e2)∧

(e6 < e5 ∨ e2 < e6) ∧ . . .) . . .

In other words, the read at line 5 can read from the initial

assignment at line 2 or the writes in method m2 at lines 12

and 13, respectively. For the read to be from line 12, other

writes (e.g., at line 13) need to happen before line 12 or after

the read. This reasoning is applied to all possible read/write

pairings. Other constraints not shown above can be derived

similarly.

Parameter Constraints. Different fields of the input object

are assigned free variables (pi). Hence, the constraint solver

can assign values to them independently, which can lead to

malformed objects that are inconsistent with properly con-

structed objects. Therefore, we restrict the assignments of

object references as parameters to previously observed ob-

jects only. We perform a heap walk of all object instances in

the client and identify their fields. If a field is of a reference

type, then we assign it a unique identifier. Moreover, we en-

code these constraints to avoid creation of objects with field

values from distinct objects. The partial constraints corre-

sponding to φparam for the running example are given below:

φparam = (p0 = a ∧ p1 = a.x ∧ p2 = a. f)∨

(p0 = b ∧ p1 = b.x ∧ p2 = b. f) . . .

This denotes that the parameters p0 . . . p2 can be due to

previously observed objects a or b in Figure 3. We can also

assign null values to the parameters. We defer discussion

on how this is handled to Section 5.

4.5 The CSolve Procedure

The CSolve procedure generates a revised client and sched-

ule, which will drive the execution towards the current tar-

get, when possible. It takes as input the set φ of encoded

constraints plus the current client p. Algorithm 4 presents

the corresponding pseudo-code.

The first step is to discharge the constraints φ to an off-

the-shelf SMT solver. We use Z3 [10] in our implementation.

If the constraints are unsatisfiable, then ⊥ is returned (lines

3–5).

If a solution σ exists, then σ provides information how to

order the instructions of different threads due to the encoded

constraints. The sorted order of the instruction/thread pairs

(line 6) forms the updated schedule s.

439

Algorithm 4 The CSolve procedure

1: procedure CSolve(φ, p)

2: σ← SMTSolver(φ)

3: if σ = unsat then

4: return ⊥ ⊲ unsatisfiable constraints

5: end if

6: s← Extract the event ordering from σ

7: params← Extract parameter assignments from σ

8: p′ ← gen client(params, p)

9: return (p′, s)

10: end procedure

The parameter assignments to various objects are avail-

able in the solution. These assignments and the current client

p are input into gen client. gen client refines p to gener-

ate a new client, p′. Broadly, our approach to generate clients

according to provided constraints is based on existing ap-

proaches [41, 43, 44]. Briefly, it corresponds to creation of

threads, invocation of various methods from these threads

with the specified parameter values. Existing objects from

the execution of the initial client can be reused to provide the

objects for the various method invocations. For our purposes,

it suffices that the generated client along with the schedule

satisfy φ.

Illustration. We now describe the process of generating

client p1 after the first iteration. CSolve receives the con-

straints encoded by Encode and solves these constraints us-

ing a SMT solver. For the current iteration, the solution in-

dicates:

• methods m1 and m2 need to be invoked on the same

object,

• the second parameter to m2 is 6.

These requirements are used while generating p1. Further,

the schedule to be followed while executing the client p1

is extracted from the solution (line 6). The newly generated

client and schedule are returned to the main algorithm.

4.6 The NextTgt Procedure

Procedure NextTgt is responsible for locating a next target

to push onto the target stack. It is invoked if the constraint

solver is unable to generate a revised client. If the target gen-

erator fails, then full rollback is enforced. Otherwise a new

target is returned. A pseudo-code description of NextTgt is

provided in Algorithm 5.

The first three steps (lines 2–4) are similar to the steps in

the Plan procedure. The set of path conditions is partitioned

per thread; the thread and method corresponding to tgt

are identified. Unlike the Plan procedure, tgt here always

has an assigned thread. Static analysis is used to derive the

critical path conditions ρ1...n toward tgt. Next, we find the

minimum i, such that the path diverges away from the target

in the trace associated with the assigned thread.

We calculate the dynamic slice starting from the relevant

conditional ρi, and derive the vars (line 6). Static analysis

is used again to detect the writer statements defining these

variables. These are the locations where the variables are

updated. The analysis builds a propagation call graph (inter-

leaving pointer analysis and call-graph construction) for the

library, and scans it for heap updates. This forms the possible

set of (next) targets (tgts at line 7).

Algorithm 5 The NextTgt procedure

1: procedure NextTgt(p, τ, tgt)

2: T ← [t 7→ pc (τ, t)]

3: t′ ← thread[tgt]; m← method (tgt)

4: ρ1...n ← reach (m, tgt)

5: Find min i in [1 . . . n] s.t ρ1...i−1.¬ρi ⊑ T [t′]

6: vars← dslice(τ, ρi)

7: tgts← writers(vars)

8: if ∃ tgt′ ∈ tgts s.t. tgt′ < used(ρi) then

9: used(ρi)← used(ρi) ∪ {tgt
′}

10: return tgt′

11: end if

12: Clear all used sets.

13: return ⊥

14: end procedure

For the conditional under consideration (ρi), we choose

a target tgt′ that is not already used by the current explo-

ration. This selection is non-deterministic to enable explo-

ration of other targets in future iterations, if the current plan

fails. We return this target after inserting it into the used set.

If no target is available, then the result of NextTgt is ⊥

after clearing all the used sets (line 12), which corresponds

to the rollback performed by the main loop. This, comple-

mented by random selection of the target at line 8, enables

exploration of a different sequence of targets across different

iterations of the main solver loop in Algorithm 1.

Illustration. For the running example, the NextTgt pro-

cedure is invoked once. After the second iteration, the Plan

procedure specifies that the condition at line 8 is flipped by

modifying the client p1. Other components of our approach

fail to generate such a client by using the execution of p1.

Since it is not possible to make progress to reach the cur-

rent target, NextTgt procedure is invoked to provide alter-

nate targets so that the original target can be reached.

NextTgt analyzes the execution of client p1 and identi-

fies that the execution failed to flip the condition at line 8.

A data-flow slice of this execution is obtained to identify

the variables that influence the outcome of this conditional

(line 6 in the algorithm). In this case, the conditional is only

dependent on the value of field f. Therefore, the procedure

searches for statements that can modify the value of field f

(line 7 in the algorithm). There are two statements in class X

that modify the field f (lines 7 and 18). As the execution has

already covered the write of f at line 7 and because it was

440

not useful in flipping the condition, we discard it. The other

target at line 18, which has not been explored, is returned as

the next target.

The other components (Plan, etc) now attempt to reach

this new target so that the original goal of violating the

assertion can be achieved.

4.7 Limitations

The Minion design is driven by practical considerations, in-

formed by our experiences in developing/debugging/testing

concurrent Java libraries. We conclude this section with a

discussion of the limitations of our design.

First, selection of targets follows a greedy strategy. There-

fore, earlier choices can lead to generation of clients that

evolve away from, rather than towards, the target violation

(even if the violation is feasible). We address this via full

rollback (lines 12-13 in Algorithm 1). Non-determinism in

target selection increases coverage, though there is no guar-

antee regarding the complexity/efficiency of the process.

Second, if the path conditions contain constraints that

defeat the expressive power of the supporting solver and

alternative sub-goals are absent to satisfy a conditional, then

our design will fail to expose the violation. This is a general

limitation of solver-based testing/analysis approaches.

Finally, our approach is limited in handling scenarios

wherein sub-goals are not merely satisfied by reachability,

but require a more complicated condition. For example, if an

instruction needs to be executed a specific number of times

for a condition to be satisfied, then it would fall outside the

reasoning power of our current prototype system.

Notwithstanding these issues, our experimental results

on real Java libraries demonstrate the effectiveness of the

proposed design in discovering bugs that manifest under

complex input conditions and interleaving scenarios. (See

Section 6.)

5. Implementation

In this section, we highlight design choices of interest w.r.t.

the implementation of our system.

Frameworks. We have implemented a prototype of the

Minion system in Java. Our implementation, designed to

analyze concurrent Java libraries, utilizes the Soot bytecode

instrumentation framework [51] for runtime monitoring, the

WALA framework [2] for static analysis, and the Z3 theorem

prover [10] for constraint solving.

Virtual threads. For ease of explanation, in our algorithms

in Section 4, we considered each method invocation in the

sequential test to originate from a distinct thread. In our im-

plementation, we do not spawn these threads explicitly. In-

stead, we associate an invocation identifier with each method

call, and treat these as “virtual” threads. Subsequently, when

the Plan procedure needs to assign a thread to a target, we

select the appropriate virtual thread. When necessary, a real

thread is spawned in the client returned by CSolve.

Budget. In a given iteration, the number of threads in the

client program can affect scalability. For example, if we use

the solver-provided solution in an unconstrained manner in

CSolve, then we might generate threads with low, if any,

utility w.r.t. the client generation process. More significantly,

such threads might contribute unnecessary constraints to the

system. For instance, in Figure 3(c) there are no constraints

on m3. A client that invokes this method with parameters b

and 0 (parameters in the input test) from a new thread will

not add new information.

To handle this, we encode an additional set of constraints,

φbudget, for CSolve. For each thread/invocation pair, we en-

code whether (or not) it is required to run in the next it-

eration. For threads that were previously assigned targets

(by Plan), the encoding always evaluates to true. For other

threads, whose usefulness is unclear, we let the constraint

solver decide based on the given budget of allowed threads.

Initially, we start with a budget of 3. We increment the bud-

get in every subsequent iteration. The solution is used to de-

termine the threads as well as the methods invoked.

Encoding null values. We also enable clients to invoke

methods with null as a parameter value. Free variables for

parameters (pi) use legal object instances from a (past) client

execution. Beyond that, we provide a special nil object,

where the base pointer and all its fields point to null values.

To enable assignment of the nil object to one of the fields

of a free variable (e.g., y.f), we enforce that the base object

(i.e., y) is not null.

Sub-goals, loops, native calls. The NextTgt procedure

identifies relevant sub-goals to satisfy a conditional by per-

forming a dynamic slice on the conditional. We track the

flow of variables to the conditional, and derive the associated

alias sets. Next, we detect updates to the elements of the sets.

These updates are considered as potential sub-goals.

We handle loops via loop unrolling in the dynamic trace.

We instrument all the library classes that are reachable from

the class under test. Furthermore, collection classes are in-

strumented to detect modifications/crashes within the collec-

tion. If an uninstrumented class is used, then that class can-

not be analyzed, which is a source of imprecision. To handle

calls whose target is not available (as with native code, such

as System.arraycopy for instance), we introduce synthetic

models that are not necessarily executable but are accurate

in modeling the semantics of the operation.

6. Experimental Validation

In this section, we report on our experimental evaluation of

Minion and its comparison against other testing tools.

Experimental Setup and Benchmarks. We have applied

Minion to several popular concurrent Java libraries. We an-

alyzed the classes that are used in earlier work [43, 44],

where the bugs lead to program crashes. We also focused in

particular on well-tested classes within these libraries, all of

441

which contain synchronization constructs and some of which

are explicitly documented as thread safe. We conducted our

experiments on an Ubuntu-14.04 desktop machine with

a 3.5Ghz Intel Core i7 processor with 16GB of RAM.

Table 2 provides information on the benchmarks.

java.lang, java.util and java.io are packages

from the Java Development Kit (JDK); guava is the Google

Core Libraries for Java; classpath contains core li-

braries for VMs and compilers; hsqldb is a relational SQL

database engine; and cache4j is a cache library for Java

objects. For brevity we refer to the analyzed classes as C1

through C10, as indicated in the table.

Benchmark Version Class name |M|

cache4j 0.4 CacheCleaner (C1) 3

classpath 0.99 BufferedInputStream (C2) 10

guava 18.0 SimpleStatsCounter (C3) 6

hsqldb 2.3.3 DoubleIntIndex (C4) 32

java.lang 1.7 StringBuffer (C5) 50

java.io 1.8 CharArrayReader (C6) 8

PipedReader (C7) 5

PushbackReader (C8) 11

StringReader (C9) 8

java.util 1.7 Vector (C10) 43

Table 2: Benchmark Information.

For each benchmark, we list in the table the version, class

name and method count. We use version 1.7 for C5 and C10

due to soot compatibility issues. The key complexity fac-

tors in detecting concurrency-induced bugs are the number

of methods, the number of parameters, as well as the num-

ber of conditionals along the path to the potentially buggy

location. Given these factors, randomly invoking methods

with arbitrary parameters concurrently will neither be scal-

able nor effective (as we also demonstrate experimentally

below).

In our experiments, as the initial client, we have defined a

program that randomly (and sequentially) invokes the meth-

ods in the class with random parameters. Each method is

invoked exactly once. The targets include existing assertions

and throw statements in the class, assertions on field deref-

erences and inserted assertions for previously known bugs.

We set the budget for iterative refinement to five.

Performance Results. Table 3 presents the data pertaining

to the detected concurrency-induced bugs and the internal

analysis statistics. The number of targets for the classes

ranges from 2 for C1 to 23 for C8. Out of an overall of

80 targets, Minion was able to detect 31 real crashes due

to concurrency-induced bugs, including previously unknown

bugs. All of these bugs are true positives due to developer

oversight.

As confirmation by a third party, we have already com-

municated some of the bugs to the respective developers,

and are in the process of reporting all the other newly found

bugs. We have already secured developer acknowledgement

Class # of # of Schedule Time Violations

Targets Constraints length (sec) Seq. Conc.

C1 2 254 37 21 0 1

C2 8 8189 25 70 2 6

C3 3 1898 43 10 0 2

C4 8 4105 10 94 4 4

C5 12 14646 116 664 5 1

C6 4 717 14 20 1 3

C7 10 3355 30 6 2 1

C8 23 7276 19 324 8 9

C9 4 900 20 21 1 3

C10 6 56045 74 120 0 1

Total 80 1350 23 31

Table 3: Detected bugs and analysis information.

for bugs reported on four of the benchmarks. The developers

agreed that the reported scenario indeed represents an unex-

pected failure, and promised to take action in response. In

one case, that includes changing the thread-safety documen-

tation,3 and in other cases, it involves fixing the code.4

Minion also triggered 23 crashes in a sequential con-

text (i.e., crashes that manifest with only a single thread).

These violations are mainly due to sanity checks on the in-

put parameters (e.g., the input object is not null, etc) and

are not bugs. These can be discarded using a switch exposed

by Minion. For the remaining targets, which could not be

reached using our system, we performed manual analysis of

the code. While we cannot guarantee that our manual anal-

ysis is flawless, we could not — to the best of our ability

— find a scenario that results in a real bug for any of these

targets.

The third column in Table 3 indicates, for a given target,

the average number of constraints discharged to the solver

per iteration. The number of constraints is dependent on the

code. Applying constraint solving to software applications

faces major scalability challenges that need to be overcome

(with millions of constraints generated for a single program

as shown in [20]). As our approach is geared towards detect-

ing bugs in library code, and the number of generated con-

straints is comparatively lower, scalability limitations due to

the constraint solver become a lesser concern.

The average schedule length ranges from 10 for C4 to

116 for C5. This corresponds to the ordering constraints on

the instructions executed by the threads. For C5, the longer

schedule is due to the presence of loop unrolling, apart from

the complex schedule that needs to manifest for the bug to

be detected. The overall time to execute the classes ranges

from 6 seconds for C7 to 11 minutes for C5. This is the time

taken to either reach an empty stack of targets or generate

a successful test. As our approach is catered towards finding

complex bugs, we believe that the reported running times are

acceptable.

3 https://github.com/google/guava/issues/2230

4 https://bugs.openjdk.java.net/browse/JDK-8143394

442

https://github.com/google/guava/issues/2230
https://bugs.openjdk.java.net/browse/JDK-8143394

 0

 2

 4

 6

 8

 10

 12

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

C
o
u
n
t

Benchmarks

Bug characteristic

Stack depth
Iteration count

Conditions nesting depth

Figure 6: Characteristics of detected bugs.

Figure 6 provides insight into the complexity of the de-

tected bugs. It presents data on the maximum values for stack

depth, iterations, as well as nesting depth of the conditions

(as specified by reach in the Plan procedure). In C5, for in-

stance, 6 methods are invoked in a nested manner between

the client and the actual target. Similarly, for C6, the num-

ber of path conditions that must be satisfied to reach the tar-

get is 11. Here, five of the conditions are related to the in-

put parameters, but the remaining conditions correspond to

the implementation logic. Exposing the crash in a concurrent

setting by satisfying these conditions is nontrivial. The iter-

ation count to reach the target is 3, demonstrating the need

to refine the clients to trigger the crashes.

Useability The output of Minion is a (multi-threaded) Java

test program (with comments), leading to a crash, along with

a human-readable schedule (in the form of a text document)

to recreate the crash. When the client is run using Minion,

the built-in scheduler consumes and follows the schedule,

thereby inducing an exceptional/crashing run, making the

problem visible/reproducible with no special effort.

Comparison with Other Tools. We also applied three ex-

isting approaches — ConTeGe [38], Narada [44] and In-

truder [43] — to the classes in our suite for comparative

analysis. For this purpose, we used the publicly available im-

plementation of these tools.

ConTeGe randomly generates many multithreaded tests

(e.g., approximately 10K for C5); it was able to detect only

two bugs across all classes in approximately eight hours. The

first defect in C4 was detected relatively quickly (with 50

tests, and in less than five minutes). The second defect, in

C10, took (much) longer to detect (around 4K tests and two

hours). These results are not surprising due to the depen-

dence of the approach on randomization.

The other two approaches required less than 10 minutes

in total to analyze all the classes, and generated 48 multi-

threaded tests. Since these tests are geared towards detecting

races and atomicity violations, and not crashes, we manually

analyzed the possibility of the synthesized tests reaching the

targets in the classes given any schedule. We observe that to-

tally seven crashes could potentially be exposed by these two

tools. The remaining 24 crashes reported by Minion could

not be detected. This is because Narada and Intruder are

agnostic to path conditions and thread interleavings.

In summary, none of the three other tools was able to

cause crashes beyond those caused by Minion. More impor-

tantly, Minion was able to detect many more crashes than

those detected by all three of these tools combined.

37 public class PushbackReader extends F i l t e rReader {
52 public PushbackReader (Reader in , i n t s ize) {
57 th is . buf = new char [s i ze] ;

58 th is . pos = s ize ;

59 }

71 private void ensureOpen () throws IOExcept ion {
72 i f (buf == nul l)

73 throw new IOExcept ion (” Stream closed ”) ;

74 }

106 public i n t read (char cbuf [] , i n t o f f , i n t len)

throws IOExcept ion {
107 synchronized (lock) {
108 ensureOpen () ;

109 t ry {
. . . / / r e tu rns on len <= 0

118 i n t a v a i l = buf . leng th − pos ;

119 i f (a v a i l > 0) {
120 i f (len < a v a i l)

121 a v a i l = len ;

122 System . arraycopy (buf , pos , cbuf , o f f , a v a i l) ;

. . .

126 }
. . .

135 } catch (ArrayIndexOutOfBoundsException e) {
136 throw new IndexOutOfBoundsException () ;

137 }
138 }
139 }

151 public void unread (i n t c) throws IOExcept ion {
152 synchronized (lock) {
153 ensureOpen () ;

154 i f (pos == 0)

155 throw new IOExcept ion (” Pushback b u f f e r over f low ”) ;

156 buf [−−pos] = (char) c ;

157 }
158 }

247 public void c lose () throws IOExcept ion {
248 super . c lose () ;

249 buf = nul l ;

250 }
281 }

Figure 7: Motivating example from openjdk-8u40-b25. Our

report resulted in filing of Oracle JDK bug 8143394.

Case Study. We now discuss one of the failures exposed

due to Minion that has been fixed by the developers. Figure 7

presents a code fragment from the latest version of the Open-

JDK library [1]. In this code, there are several documented

error conditions, such as the throwing of an IOException at

line 155 backed by the throws statement at line 151. Be-

yond these situations, there are more subtle crash scenarios.

We focus in particular on the arraycopy() call at line 122.

443

If buf is null, then a NullPointerException (NPE) would be

thrown, which is unexpected based on the throws and catch

statements in read().

Interestingly, this problem can manifest. It might even oc-

cur after a successful dereference of buf at line 118 within a

synchronized context. This can occur due to a null assign-

ment by another thread between the execution of the two

lines. More specifically, there are two conditions, beyond in-

voking read, that need to be satisfied:

• unread() needs to be invoked to decrement pos (line 156),

so that the condition at line 119 is satisfied; and

• close() needs to be invoked between lines 119 to 122 to

set buf to null.

Apart from these conditions, the three method invocations

should be on the same receiver object. While the NPE is

also realizable at line 118, it is vital that the developer has a

comprehensive understanding of the possible bugs (e.g., the

exception at line 122) to introduce an appropriate fix.

153 : ensureOpen();

154 : if(pos == 0)

152 : lock(lock)

157 : unlock(lock)

156 : buf[pos−−] = (char) c;

107: lock(lock)

108 : ensureOpen();

119 : if(avail > 0)

118 : avail = buf.length−pos;

248 : super.close()

249 : buf = null;

122 : System.arraycopy(buf, ...) NullPointerException

p.read(...)p.close(); p.unread(’a’)

t2t1 t3

Figure 8: Synthesized failing concurrent execution.

Minion was able to synthesize the aforementioned com-

plex failing scenario automatically by simply analyzing the

execution of a sequential client that invoked the methods in

the class with random parameter values. Figure 8 presents

the generated multithreaded client and the corresponding

failing execution.

7. Conclusions

In this paper, we described the design and implementation

of a directed testing engine named Minion that combines dy-

namic trace information with statically identified refinement

goals to iteratively refine a test, via constraint solving, to the

point of exhibiting a concurrency-induced bug. Across 10

concurrent classes from popular Java libraries, Minion was

able to detect 31 real crashes, some of which highly non-

trivial, including previously unknown issues, in a total of 23

minutes. These results suggest that Minion is a compelling

candidate for practical adoption.

Acknowledgements

We thank the anonymous reviewers for their constructive

feedback that helped improve the presentation of this work.

We also thank Peng Liu for useful initial discussions leading

to this work. The first author is supported by a Google India

PhD fellowship and the last author is supported by a Google

Faculty Research award.

References

[1] PushbackReader.java. http://grepcode.com/file/

repository.grepcode.com/java/root/jdk/

openjdk/8u40-b25/java/io/PushbackReader.

java/.

[2] The Watson Libraries for Analysis. http://wala.

sourceforge.net/wiki/index.php/Main_Page.

[3] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem,

C. Henri-Gros, A. Kamsky, S. McPeak, and D. Engler. A few

billion lines of code later: Using static analysis to find bugs in

the real world. Commun. ACM, 53(2), 2010.

[4] S. Biswas, J. Huang, A. Sengupta, and M. D. Bond. Dou-

blechecker: Efficient sound and precise atomicity checking. In

Proceedings of the 35th ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation, PLDI ’14,

pages 28–39, 2014.

[5] C. Cadar, D. Dunbar, and D. Engler. Klee: Unassisted and

automatic generation of high-coverage tests for complex sys-

tems programs. In Proceedings of the 8th USENIX Conference

on Operating Systems Design and Implementation, OSDI’08,

pages 209–224, 2008.

[6] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R.

Engler. Exe: Automatically generating inputs of death. ACM

Trans. Inf. Syst. Secur., 12(2):10:1–10:38, Dec. 2008.

[7] S. Chandra, S. J. Fink, and M. Sridharan. Snugglebug: A pow-

erful approach to weakest preconditions. In Proceedings of the

30th ACM SIGPLAN Conference on Programming Language

Design and Implementation, PLDI ’09, pages 363–374, 2009.

[8] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar,

and M. Sridharan. Efficient and precise datarace detection for

multithreaded object-oriented programs. In Proceedings of the

ACM SIGPLAN 2002 Conference on Programming Language

Design and Implementation, PLDI ’02, pages 258–269, 2002.

[9] C. Csallner, Y. Smaragdakis, and T. Xie. Dsd-crasher: A

hybrid analysis tool for bug finding. ACM Trans. Softw. Eng.

Methodol., 17(2), May 2008.

[10] L. De Moura and N. Bjørner. Z3: An efficient smt solver.

In Proceedings of the Theory and Practice of Software, 14th

International Conference on Tools and Algorithms for the

Construction and Analysis of Systems, TACAS’08/ETAPS’08,

pages 337–340, 2008.

[11] M. Eslamimehr and J. Palsberg. Sherlock: Scalable dead-

lock detection for concurrent programs. In Proceedings of

the 22Nd ACM SIGSOFT International Symposium on Foun-

dations of Software Engineering, FSE 2014, pages 353–365,

2014.

444

http://grepcode.com/file/repository.grepcode.c om/java/root/jdk/openjdk/8u40-b25/java/io/PushbackReader.java/
http://grepcode.com/file/repository.grepcode.c om/java/root/jdk/openjdk/8u40-b25/java/io/PushbackReader.java/
http://grepcode.com/file/repository.grepcode.c om/java/root/jdk/openjdk/8u40-b25/java/io/PushbackReader.java/
http://grepcode.com/file/repository.grepcode.c om/java/root/jdk/openjdk/8u40-b25/java/io/PushbackReader.java/
http://wala.sourceforge.net/wiki/index.php/Main_Page
http://wala.sourceforge.net/wiki/index.php/Main_Page

[12] M. Eslamimehr and J. Palsberg. Race directed scheduling

of concurrent programs. In Proceedings of the 19th ACM

SIGPLAN Symposium on Principles and Practice of Parallel

Programming, PPoPP ’14, pages 301–314, 2014.

[13] C. Flanagan and S. N. Freund. Fasttrack: Efficient and precise

dynamic race detection. In Proceedings of the 2009 ACM

SIGPLAN Conference on Programming Language Design and

Implementation, PLDI ’09, 2009.

[14] C. Flanagan and P. Godefroid. Dynamic partial-order reduc-

tion for model checking software. In Proceedings of the 32Nd

ACM SIGPLAN-SIGACT Symposium on Principles of Pro-

gramming Languages, POPL ’05, pages 110–121, 2005.

[15] C. Flanagan, S. N. Freund, and J. Yi. Velodrome: A sound and

complete dynamic atomicity checker for multithreaded pro-

grams. In Proceedings of the 2008 ACM SIGPLAN Confer-

ence on Programming Language Design and Implementation,

PLDI ’08, 2008.

[16] G. Fraser and A. Arcuri. Evosuite: Automatic test suite gen-

eration for object-oriented software. In Proceedings of the

19th ACM SIGSOFT Symposium and the 13th European Con-

ference on Foundations of Software Engineering, ESEC/FSE

’11, pages 416–419, 2011.

[17] P. Godefroid. Compositional dynamic test generation. In Pro-

ceedings of the 34th Annual ACM SIGPLAN-SIGACT Sympo-

sium on Principles of Programming Languages, POPL ’07,

pages 47–54, 2007.

[18] P. Godefroid, N. Klarlund, and K. Sen. Dart: Directed au-

tomated random testing. In Proceedings of the 2005 ACM

SIGPLAN Conference on Programming Language Design and

Implementation, PLDI ’05, 2005.

[19] J. Huang. Stateless model checking concurrent programs with

maximal causality reduction. In Proceedings of the 36th ACM

SIGPLAN Conference on Programming Language Design and

Implementation, PLDI 2015, pages 165–174, 2015.

[20] J. Huang, C. Zhang, and J. Dolby. Clap: Recording local ex-

ecutions to reproduce concurrency failures. In Proceedings of

the 34th ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation, PLDI ’13, 2013.

[21] J. Huang, P. O. Meredith, and G. Rosu. Maximal sound pre-

dictive race detection with control flow abstraction. In Pro-

ceedings of the 35th ACM SIGPLAN Conference on Program-

ming Language Design and Implementation, PLDI ’14, pages

337–348, 2014.

[22] V. Jagannath, M. Gligoric, D. Jin, Q. Luo, G. Rosu, and

D. Marinov. Improved multithreaded unit testing. In Pro-

ceedings of the 19th ACM SIGSOFT Symposium and the 13th

European Conference on Foundations of Software Engineer-

ing, ESEC/FSE ’11, pages 223–233, 2011.

[23] P. Joshi, C.-S. Park, K. Sen, and M. Naik. A randomized

dynamic program analysis technique for detecting real dead-

locks. In Proceedings of the 2009 ACM SIGPLAN Confer-

ence on Programming Language Design and Implementation,

PLDI ’09, 2009.

[24] B. Kasikci, C. Zamfir, and G. Candea. Data races vs. data race

bugs: telling the difference with portend. In Proceedings of the

17th International Conference on Architectural Support for

Programming Languages and Operating Systems, ASPLOS

2012, London, UK, March 3-7, 2012, pages 185–198, 2012.

[25] P. Liu, X. Zhang, O. Tripp, and Y. Zheng. Light: Replay via

tightly bounded recording. In Proceedings of the 36th ACM

SIGPLAN Conference on Programming Language Design and

Implementation, PLDI 2015, pages 55–64, 2015.

[26] B. Livshits, M. Sridharan, Y. Smaragdakis, O. Lhoták, J. N.

Amaral, B.-Y. E. Chang, S. Z. Guyer, U. P. Khedker,

A. Møller, and D. Vardoulakis. In defense of soundiness: A

manifesto. Commun. ACM, 58(2):44–46, Jan. 2015.

[27] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes:

A comprehensive study on real world concurrency bug char-

acteristics. In Proceedings of the 13th International Confer-

ence on Architectural Support for Programming Languages

and Operating Systems, ASPLOS XIII, pages 329–339, 2008.

[28] N. Machado, B. Lucia, and L. Rodrigues. Concurrency debug-

ging with differential schedule projections. In Proceedings of

the 36th ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation, PLDI 2015, pages 586–

595, 2015.

[29] N. Machado, B. Lucia, and L. Rodrigues. Concurrency debug-

ging with differential schedule projections. In Proceedings of

the 36th ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation, PLDI 2015, pages 586–

595, 2015.

[30] N. Machado, B. Lucia, and L. E. T. Rodrigues. Production-

guided concurrency debugging. In Proceedings of the

21st ACM SIGPLAN Symposium on Principles and Practice

of Parallel Programming, PPoPP 2016, Barcelona, Spain,

March 12-16, 2016, pages 29:1–29:12, 2016.

[31] S. McPeak, C.-H. Gros, and M. K. Ramanathan. Scalable

and incremental software bug detection. In Proceedings of

the 2013 9th Joint Meeting on Foundations of Software Engi-

neering, ESEC/FSE 2013.

[32] S. S. Muchnick. Advanced Compiler Design and Implementa-

tion. Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA, 1997. ISBN 1-55860-320-4.

[33] M. Musuvathi and S. Qadeer. Logic-Based Program Synthe-

sis and Transformation: 16th International Symposium, LOP-

STR 2006, Venice, Italy, July 12-14, 2006, Revised Selected

Papers, chapter CHESS: Systematic Stress Testing of Con-

current Software, pages 15–16. Springer Berlin Heidelberg,

Berlin, Heidelberg, 2007.

[34] S. Nagarakatte, S. Burckhardt, M. M. Martin, and M. Musu-

vathi. Multicore acceleration of priority-based schedulers for

concurrency bug detection. In Proceedings of the 33rd ACM

SIGPLAN Conference on Programming Language Design and

Implementation, PLDI ’12, 2012.

[35] S. Narayanasamy, Z. Wang, J. Tigani, A. Edwards, and

B. Calder. Automatically classifying benign and harmful data

races using replay analysis. In Proceedings of the 2007 ACM

SIGPLAN Conference on Programming Language Design and

Implementation, PLDI ’07, 2007.

[36] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball. Feedback-

directed random test generation. In Proceedings of the 29th

International Conference on Software Engineering, ICSE ’07,

pages 75–84, 2007. ISBN 0-7695-2828-7.

445

[37] S. Park, S. Lu, and Y. Zhou. Ctrigger: Exposing atomicity

violation bugs from their hiding places. In Proceedings of the

14th International Conference on Architectural Support for

Programming Languages and Operating Systems, ASPLOS

XIV, 2009.

[38] M. Pradel and T. R. Gross. Fully automatic and precise

detection of thread safety violations. In Proceedings of the

33rd ACM SIGPLAN Conference on Programming Language

Design and Implementation, PLDI ’12, 2012.

[39] D. Prountzos, R. Manevich, and K. Pingali. Synthesizing par-

allel graph programs via automated planning. In Proceedings

of the 36th ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation, PLDI 2015, pages 533–

544, 2015.

[40] W. Pugh and N. Ayewah. Unit testing concurrent software. In

Proceedings of the Twenty-second IEEE/ACM International

Conference on Automated Software Engineering, ASE ’07,

pages 513–516, 2007.

[41] M. Samak and M. K. Ramanathan. Multithreaded test synthe-

sis for deadlock detection. In Proceedings of the 2014 ACM

International Conference on Object Oriented Programming

Systems Languages and Applications, OOPSLA ’14, pages

473–489, 2014.

[42] M. Samak and M. K. Ramanathan. Trace driven dynamic

deadlock detection and reproduction. In Proceedings of the

2014 ACM SIGPLAN Conference on Principles and Practices

of Parallel Programming, PPoPP ’14, 2014.

[43] M. Samak and M. K. Ramanathan. Synthesizing tests for

detecting atomicity violations. In Proceedings of the 2015

10th Joint Meeting on Foundations of Software Engineering,

ESEC/FSE 2015, pages 131–142, 2015.

[44] M. Samak, M. K. Ramanathan, and S. Jagannathan. Synthe-

sizing racy tests. In Proceedings of the 36th ACM SIGPLAN

Conference on Programming Language Design and Imple-

mentation, PLDI 2015, pages 175–185, 2015.

[45] K. Sen. Race directed random testing of concurrent programs.

In Proceedings of the 2008 ACM SIGPLAN Conference on

Programming Language Design and Implementation, PLDI

’08, pages 11–21, 2008.

[46] Y. Smaragdakis, J. Evans, C. Sadowski, J. Yi, and C. Flanagan.

Sound predictive race detection in polynomial time. In Pro-

ceedings of the 39th Annual ACM SIGPLAN-SIGACT Sympo-

sium on Principles of Programming Languages, POPL ’12,

pages 387–400, 2012.

[47] S. Steenbuck and G. Fraser. Generating unit tests for con-

current classes. In Proceedings of the 2013 IEEE Sixth In-

ternational Conference on Software Testing, Verification and

Validation, ICST ’13, pages 144–153, 2013.

[48] B. Swarnendu, Z. Minjia, B. Michael, and L. Brandon. In

Proceedings of the 2015 ACM International Conference on

Object Oriented Programming Systems Languages and Ap-

plications, OOPSLA ’15, 2015.

[49] S. Thummalapenta, T. Xie, N. Tillmann, J. de Halleux, and

Z. Su. Synthesizing method sequences for high-coverage test-

ing. In Proceedings of the 2011 ACM International Confer-
ence on Object Oriented Programming Systems Languages

and Applications, OOPSLA ’11.

[50] O. Tripp, O. Weisman, and L. Guy. Finding your way in the

testing jungle: A learning approach to web security testing.

In Proceedings of the 2013 International Symposium on Soft-

ware Testing and Analysis, pages 347–357, 2013.

[51] R. Vallee-Rai, E. Gagnon, L. Hendren, P. Lam, P. Pominville,

and V. Sundaresan. Optimizing java bytecode using the soot

framework: Is it feasible? In In International Conference on

Compiler Construction, LNCS 1781, pages 18–34, 2000.

[52] C. Wang, S. Kundu, M. Ganai, and A. Gupta. Symbolic

predictive analysis for concurrent programs. In Proceedings of

the 2Nd World Congress on Formal Methods, FM ’09, pages

256–272, 2009.

[53] C. Zamfir and G. Candea. Execution synthesis: a technique

for automated software debugging. In European Conference

on Computer Systems, Proceedings of the 5th European con-

ference on Computer systems, EuroSys 2010, Paris, France,

April 13-16, 2010, pages 321–334, 2010.

446

	Introduction
	Related Work
	Technical Overview
	The Minion Architecture
	Illustrative Run

	Design
	The Minion Main Loop
	The Execute Procedure
	The Plan Procedure
	The Encode Procedure
	The CSolve Procedure
	The NextTgt Procedure
	Limitations

	Implementation
	Experimental Validation
	Conclusions

