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Abstract

Designing and implementing thread-safe multithreaded li-

braries can be a daunting task as developers of these libraries

need to ensure that their implementations are free from con-

currency bugs, including deadlocks. The usual practice in-

volves employing software testing and/or dynamic analy-

sis to detect deadlocks. Their effectiveness is dependent on

well-designed multithreaded test cases. Unsurprisingly, de-

veloping multithreaded tests is significantly harder than de-

veloping sequential tests for obvious reasons.

In this paper, we address the problem of automatically

synthesizing multithreaded tests that can induce deadlocks.

The key insight to our approach is that a subset of the prop-

erties observed when a deadlock manifests in a concurrent

execution can also be observed in a single threaded execu-

tion. We design a novel, automatic, scalable and directed

approach that identifies these properties and synthesizes a

deadlock revealing multithreaded test. The input to our ap-

proach is the library implementation under consideration and

the output is a set of deadlock revealing multithreaded tests.

We have implemented our approach as part of a tool,

named OMEN1. OMEN is able to synthesize multithreaded tests

on many multithreaded Java libraries. Applying a dynamic

deadlock detector on the execution of the synthesized tests

results in the detection of a number of deadlocks, includ-

ing 35 real deadlocks in classes documented as thread-safe.

Moreover, our experimental results show that dynamic anal-

ysis on multithreaded tests that are either synthesized ran-

domly or developed by third-party programmers are ineffec-

tive in detecting the deadlocks.

Keywords Deadlock detection; dynamic analysis; concur-

rency

1 The tool derives its name due to its ability to predict ominous deadlocks.
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1. Introduction

Thread-safe [22] libraries are beneficial as the developers of

the client programs need not consider the intricacies of the

issues pertaining to multithreading and yet accrue the ben-

efits of multithreading. However, designing such libraries

can be challenging. A library implementation is considered

thread-safe, if any valid concurrent invocation of its methods

is free of concurrency bugs without requiring additional syn-

chronization. To provide this guarantee, the library imple-

mentation needs to be tested for possible concurrency bugs,

including deadlocks. There are multiple ways of detecting

deadlocks including use of software testing [6, 11, 16, 17],

dynamic analysis [3, 14, 23] and static analysis [5, 15, 18,

27] approaches.

Traditional software testing techniques are inadequate to

detect deadlocks because the defects may manifest only on

rare thread schedules [29]. As a result, a number of dynamic

analysis approaches are designed to detect and reproduce

deadlocks [3, 14, 23, 28]. The dynamic analyses operate by

analyzing the execution of the program on a given test case

and attempt to infer whether any other thread interleaving

on the same test case can result in a deadlock. Unsurpris-

ingly, the ability of the dynamic analysis techniques to detect

deadlocks is critically dependent on the quality of the ana-

lyzed executions. Transitively, the quality of the test cases

becomes the key to detecting deadlocks. But, in practice,

even writing test cases for sequential programs is considered

arduous and ineffective resulting in the design of automatic

test generators [9, 20, 25].

Pradel and Gross [22] designed an interesting approach

that randomly generates method sequences which are then

executed concurrently by different threads to automatically

detect thread safety violations. While an important first step,

the use of randomization as a substrate can result in the

generation of many uninteresting (defect unrevealing) test

cases. To detect a concurrency bug, the execution needs to

satisfy certain properties. The properties include the code

that is covered by individual threads, objects operated on

by different threads, the lifetimes of the threads, etc. These
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properties can play a significant role in defect detection. Any

approach that does not consider these factors into account

while generating test cases will likely suffer from the usual

limitations associated with the size of the search space.

To illustrate this problem further, consider the simple ex-

ample shown in Figure 1. It presents the implementation of

method foo in class A. When a client, testFoo, invokes foo

as shown in the figure, a lock on a1 is acquired followed

by a lock on a2. The implementation of A is not thread-

safe because a deadlock can occur under certain scenar-

ios when foo is called without holding appropriate lock(s).

For example, if two threads invoke testFoo(a1,a2) and

testFoo(a2,a1) concurrently, then a deadlock may mani-

fest in some execution. This is because the first thread may

attempt to acquire a lock on a2 while holding a lock on a1
and the second thread may attempt to acquire a lock on a1
while holding a lock on a2.

synchronized foo (A a) {
synchronized (a) {}

}

class A {

         }
} }

class Test {

a1.foo(a2)

void testFoo(A a1, A a2) {

Figure 1. Illustrative example.

If testFoo is executed by a single thread, a dynamic

deadlock detector will not detect any deadlock in the corre-

sponding execution. If we synthesize method sequences that

can be executed concurrently in a random manner and have

the deadlock detector analyze the corresponding execution,

it will not necessarily be helpful either. For example, invok-

ing a1.foo(a2) from different threads cannot help because

the threads do not acquire the locks in opposite order. For

the deadlock to manifest, it is essential that different threads

invoke foo as explained in the previous paragraph. Unfor-

tunately, even for such a simple example, the sophisticated

machinery of deadlock detectors fail to detect any problems,

unless a suitable test case exists.

In general, deadlocks can occur if a combination of cer-

tain methods are invoked by different threads. A brute force

analysis of concurrent execution of different possible combi-

nation of methods is impractical. Even assuming that the rel-

evant combination of methods to be executed concurrently is

provided by an oracle, the invocation context becomes vital

to detect any issues.

In this paper, we address the problem of synthesizing

multithreaded test cases to enable deadlock detection in mul-

tithreaded libraries. Our key insight is that a subset of prop-

erties (e.g., nested lock acquisitions) that are exhibited when

a deadlock manifests in a multithreaded execution can also

be observed in a single threaded execution. Subsequently, we

use the observed properties to enable the synthesis of a dead-

lock revealing multithreaded test case. Based on this insight,

we propose a novel, directed and scalable approach for syn-

thesizing multithreaded test cases. The input to our approach

is the library that needs to be tested. The output is a set of

multithreaded tests, along with a list of deadlocks detected

by each test.

Our approach works by initially generating a seed test-

suite, I, using Randoop [20]. Optionally, if a manually de-

veloped testsuite already exists for the library, then it can be

used as the seed testsuite2. We analyze the traces obtained

by executing the tests in I and construct a lock dependency

relation, D, which is a collection of lock nodes. Because the

traces are from different executions, the lock instances ob-

served in the traces for different tests are different. There-

fore, we use the type of the lock instance to represent a lock

node in D so that the partial identity of locks across runs

can be maintained. A cycle in D points to a potential dead-

locking scenario. We identify the method invocations, M, that

are responsible for the creation of the lock nodes present in

the cycle. These methods need to be invoked concurrently

across multiple threads.

Executing the methods concurrently alone may not be

sufficient because objects used in the invocations need to be

shared or linked properly. Therefore, we derive an invocation

context, i.e., the parameters (and receivers) to be used while

invoking the methods in M. We analyze the execution trace

associated with the test case involving each method in M.

From the location of the lock acquisition in the trace, we

search backwards to identify the data dependence of the lock

on the method’s parameter. We utilize this information along

with the lock nodes in a cycle, to generate an assignment

of objects to parameters of the methods in M. Subsequently,

we generate a test that spawns multiple threads where each

thread will invoke a method from M with the appropriate

invocation context. We use iGoodLock [14] to analyze the

execution of the multithreaded test to detect deadlocks.

We have implemented a tool, named OMEN, on top of the

soot [26] bytecode analysis framework that incorporates

our approach. We are able to detect a number of unknown

(and known) deadlocks by applying OMEN on many multi-

threaded Java libraries. We use the automatically generated

tests from Randoop [20] as the seed testsuite and are able to

generate 26 multithreaded tests from a total of 3500 sequen-

tial tests. Analyzing the execution traces of the synthesized

tests detects 61 deadlocks across all libraries, including 45

true positives. In comparison, ConTeGe [22] generates ap-

proximately 27K multithreaded tests and is unable to detect

any deadlock. The difference in the numbers shows the con-

trast between randomized and directed approaches. More in-

terestingly, we also detected the possibility of deadlocks in

classes in colt [1], a library for high performance scientific

computing, that are documented as thread safe. The overall

analysis time of OMEN is negligible. For example, the analysis

time for a trace with one million elements is seven minutes

approximately.

2 These tests may cover typical usage scenarios of the library and direct our

approach towards generating multithreaded tests for these scenarios.
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To study the difficulty associated with detecting the dead-

locks that are detected by OMEN, we obtained manually writ-

ten tests from four volunteers including two graduate stu-

dents (unaffiliated to our lab), a researcher and a software

engineer. We observe that application of iGoodLock [14]

on the execution of their multithreaded tests did not reveal

any deadlock. However, we were able to use their sequential

tests as seed testsuite to our approach and detected 63 po-

tential deadlocks (42 true positives). We also observed that

the detection ability of our approach is influenced by the ba-

sic coverage provided by the tests. Therefore, the first author

developed a sequential seed testsuite with the objective of

invoking distinct methods to provide good coverage. Signifi-

cantly, even using such a naive seed testsuite, our tool detects

81 deadlocks (60 true positives). In other words, OMEN is able

to leverage even uninteresting sequential tests to synthesize

deadlock revealing multithreaded tests.

We make the following technical contributions:

1. We propose an elegant approach to automatically synthe-

size multithreaded tests that can enable deadlock detec-

tion in multithreaded libraries.

2. We address the challenges associated with identifying

the combination of the methods that need to be invoked

concurrently and the invocation context before invoking

the methods.

3. We provide a detailed design and implementation of our

tool, named OMEN, that incorporates our proposed algo-

rithms.

4. We demonstrate the usefulness of OMEN by applying it on

many multithreaded Java libraries and detect a number

of previously unknown (and known) deadlocks.

2. Motivation

We motivate the problem addressed in this paper by provid-

ing an example from a widely used multithreaded library,

colt [1]. The documentation for colt suggests that some

classes defined in it are thread safe. The example demon-

strates the various challenges in synthesizing effective mul-

tithreaded tests that can help detect violations of this prop-

erty.

The implementation of method sampleBootstrap that

is defined in class DynamicBin1D is given in Figure 2. The

method is used for statistical computations. A software tester

unfamiliar with the domain may find it daunting to write ef-

fective sequential tests to validate the various features. Fur-

thermore, the documentation for class DynamicBin1D sug-

gests that it is thread-safe [1]. Helpfully, the documentation

also provides a sample usage of the method and we present

the relevant parts of the usage in Figure 3. The code fragment

constructs two instances of DynamicBin1D, X and Y, and

also creates other relevant objects that are used while invok-

ing sampleBootstrap on instance X at line 25. Because the

code corresponding to the sample usage is single threaded, a

buffered (...);

buffered (...);

buffered (...);

randomGenerator = Uniform.makeDefaultGenerator();
582 :     if (randomGenerator==null)

synchronized581 : public                        DynamicBin1D sampleBootstrap

( DynamicBin1D other, ... ) {

bootstrap.

size();

585 :     int maxCapacity = 1000;

590 :     DynamicBin1D sample1 = new DynamicBin1D();

593 :     DynamicBin1D sample2 = new DynamicBin1D();

596 :     DynamicBin1D bootstrap = new DynamicBin1D();

608 :     }

587 :     int s2 = 

586 :     int s1 = 

597 :     DoubleBuffer bootBuffer = 

605 : 

other     .size();

591 :     DoubleBuffer buffer1 = sample1.

594 :     DoubleBuffer buffer2 = sample2.

600 :     for (int i=resamples; − −i >= 0; ) {

604 : 

                 other.             (s2, true, randomGenerator, buffer2);sample

                 this.             (s1, true, randomGenerator, buffer1);sample

607 :         bootBuffer.add(function.apply(sample1, sample2));

.clear()

.clear()

601 :         sample1            ;

602 :         sample2            ;

611 :  }

Figure 2. Implementation of sampleBootstrap from

colt.

dynamic deadlock detector will not report any defects. How-

ever, we will illustrate a few scenarios involving the invoca-

tion of sampleBootstrap across multiple threads that will

result in a potential deadlock.

Example usage:

8 : RandomEngine random

{ }...11 : BinBinFunction1D diff = new BinBinFunction1D

 5 : DynamicBin1D Y = new DynamicBin1D();

 2 : double[] v1 = { 1, 2, 3, ...};

 3 : double[] v2 = { 10, 11, 12, ...};

 4 : DynamicBin1D X = new DynamicBin1D();

 6 : X.addAllOf(new DoubleArrayList(v1));

 7 : Y.addAllOf(new DoubleArrayList(v2));

25 : X.sampleBootstrap (Y, 1000, random, diff);

= new MarsenneTwister ();

Figure 3. Sample usage of sampleBootstrap.

Since sampleBootstrap is synchronized (at line 581), a

lock on the object instance invoking it is acquired before ex-

ecuting any other instruction within the method body. This

lock is released only when the method exits. Between the

method entry and exit, a number of locks are acquired and

released. For example, the invocations of the methods size

(at lines 586 and 587), buffered (at lines 591, 594 and

597), clear (at lines 601 and 602) and sample (at lines
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604 and 605) acquire and release locks on their receivers re-

spectively while holding a lock on the receiver of the current

invocation of sampleBootstrap. The code for the imple-

mentation of these methods that cause the nested acquisition

spans multiple classes and files. Clearly, manually parsing

the implementation and writing test cases to detect dead-

locks becomes impractical.

Moreover, all the nested acquisitions are not equally in-

teresting from the perspective of deadlock detection. For

example, the nested acquisition associated with the reen-

trant locks at lines 586 and 604 can never cause a dead-

lock. Similarly, the nested acquisitions at lines 591, 594,

597, 601 and 602 are also safe because the associated ob-

jects on which the lock is acquired (sample1, sample2 and

bootstrap respectively) are created locally. The caller of

sampleBootstrap does not have access to these objects

when the nested lock acquisitions happen. This leaves us

with nested acquisitions at lines 587 and 605 that can cre-

ate some interesting deadlocking scenarios given a suitable

invocation context.

In summary, the following barriers exist to detect dead-

locking scenarios involving concurrent invocation of one

method:

• finding possible nested acquisitions spread across multi-

ple methods and files,

• identifying relevant acquisitions that can expose dead-

locking scenarios, and

• synthesizing a new test case that invokes the method with

appropriate parameters from different threads.

DynamicBin1D contains 35 public methods. Therefore, if

the deadlocking scenarios involve invoking multiple meth-

ods in DynamicBin1D, then an additional barrier exists in

the form of identifying the relevant methods that need to be

invoked among 235 combinations. With parameters to be ap-

propriately set for each of these invocations, the number of

tests that need to be run becomes impractical quickly. This is

without even accounting for the specific schedules that will

result in a deadlock.

Sl.No Deadlocks

1 {(t1: 581→ 587), (t2: 581→ 587)}
2 {(t1: 581→ 587), (t2: 581→ 605)}
3 {(t1: 581→ 605), (t2: 581→ 587)}
4 {(t1: 581→ 605), (t2: 581→ 605)}

Table 1. Detected deadlocks.

In this paper, we overcome all these barriers. The input

to OMEN includes the implementation of DynamicBin1D and

optionally a seed testsuite that includes the sample uses of

different APIs of the class. Figure 4 shows one of the au-

tomatically synthesized multithreaded tests output by OMEN.

Here, there are invocations to sampleBootstrap from two

different threads and the invocation context is setup such that

a deadlock can manifest.

Thread t1 = new Thread() {
void run() {

X.sampleBootstrap(Y, 1000, random, diff);
}

}

Thread t2 = new Thread() {
void run() {

Y.sampleBootstrap(X, 1000, random, diff);
}

}

}
// start the threads t1 and t2

{
// Initialize variables X, Y, random and diff

public class TestDriver

Figure 4. Test case synthesized by OMEN.

After analyzing the execution of the synthesized test in

Figure 4, iGoodLock [14] detects four deadlocks as shown

in Table 1. For example, the first deadlock indicates that t1
acquires a lock on X at line 581 and waits for a lock on Y at

line 587, while t2 acquires a lock on Y at line 581 and waits

for a lock on X at line 587. A manual analysis of the reported

deadlocks results in identifying the first three deadlocks as

true positives.

3. Design

The overall architecture of our tool, OMEN, for synthesiz-

ing multithreaded test cases to enable deadlock detection is

given in Figure 5. There are four major components in our

design: Logger, Cycle Detector, Synthesizer and

Generator.

Instrumentor
Detector

Cycle

Deadlock
Detector

Tests
Deadlocking

Randoop

Logger

Cycles

Instrumented
Lock

Dependency

Concurrent
Method

Invocations

Relation

Tests

Single−threaded
Tests

Library

Deadlocks

Multithreaded

Generator Synthesizer

Execution
Traces

Library,Tests

Figure 5. Architecture of OMEN.

The input to OMEN is the library under consideration. If

the seed testsuite (manually developed single threaded tests)

is not given as input, we generate the seed testsuite using

Randoop [20]. The Instrumentor instruments the library

and the tests. The Logger executes the instrumented tests

and stores the execution traces. It also constructs a lock de-

pendency relation across the execution of all test cases in the
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testsuite and inputs it to the Cycle Detector. The Cycle

Detector detects the presence of cyclic chains in the depen-

dency relation. A cycle suggests the possibility of a deadlock

when the corresponding test cases are executed concurrently.

However, executing the identified test cases concurrently is

not enough as the threads need to acquire locks on shared ob-

jects in a conflicting order. The Synthesizer processes the

detected cycles and the execution traces to synthesize pos-

sible sets of concurrent method invocations. These invoca-

tions when made by different threads may manifest a dead-

lock. For each set of invocations, the Generator constructs

a multithreaded test case by spawning threads and perform-

ing each invocation in the set from a different thread. These

tests are executed and analyzed by a dynamic deadlock de-

tector which reports the detected deadlocks along with the

corresponding multithreaded tests. We now provide a de-

tailed description of the working of the major components.

3.1 Logger

The primary goal of the Logger is to monitor the execution

of multiple test cases and track data appropriately so that the

collected data can be effectively used by the other compo-

nents. We define two data structures, an execution trace and

a lock dependency relation, to collect the required data for

our analysis and describe them here. The data maintained

in the lock dependency relation and the execution trace is

used to address two fundamental issues to synthesize a mul-

tithreaded test:

• Identify lock acquisitions that point to a potential dead-

lock.

• Identify the appropriate invocation context for the meth-

ods (in the seed testsuite), such that their invocation from

different threads will lead to a real deadlock.

We provide a detailed description of the former in Sec-

tion 3.2 and the latter in Section 3.3.

3.1.1 Execution trace

An execution trace, σ, is a sequence of events generated for

every test case execution. The events include:

• alloc(x) : Represents an allocation to x.

• load(x,f,y) : If f is null, then the event represents the

assignment x := y. Otherwise, represents x.f := y.

• store(x,f,y) : Represents the assignment x := y.f.

Here, f is never null to avoid redundancy with load.

• lock(x) : Acquires lock on the object represented by x.

• unlock(x) : Releases the lock on the object represented

by x.

• enter(iid,m,plist) : Invocation of method m at invo-

cation index iid. plist gives the sequence of parame-

ters to m.

• exit(m) : Return from method m.

209 :
208 :

205 :
204 :
203 :
202 :
201 :

108 :
107 :
106 :
105 :
104 :
103 :
102 :
101 :

(b)

(a) (c)

class A {

synchronized (b.mutex) {} 

synchronized (mutex) {

public void foo (A a, B b) {

synchronized (a.mutex) {

...

class B {

synchronized (mutex) {
public void bar (A a) {

synchronized (a.mutex) {}
...

public void baz (A a) {
synchronized (mutex) {
synchronized (a.mutex) {}...210 :

I2 :

22 : B b2 = new B();

23 : b2.bar(a3);

24 : b2.baz(a3)

21 : A a3 = new A();

11 : A a1 = new A();

12 : A a2 = new A();

13 : B b1 = new B();

14 : a1.foo(a2,b1)

15 : b1.bar(a1)

t1 : a1.foo(a2, b1)

b2.bar(a3)

T1 mutex;

synchronized (b′.mutex) {}

B b′ = new B();

t2 :

T2 mutex;

I1 :

Figure 6. (a) Running example. (b) Seed testsuite: {I1, I2}.
(c) Synthesizing a potential deadlock.

Here, x and y are variable names, and f is a field name. We

maintain the above events to track the methods in which

the lock acquisitions are made and the flow of data to the

lock acquisitions. The collection of the traces for all tests is

represented by Σ.

We use a running example to explain the different stages

of our approach. Figure 6 gives the implementation of two

classes, A and B. It also provides the implementation of the

seed testsuite, I1 and I2, that are used to test the methods in

these classes. If the methods in A and B are invoked concur-

rently, then there are many possible deadlocks. One of the

possible concurrent method invocations leading to a dead-

lock is shown in Figure 6(c). If methods foo and bar are

invoked from different threads and the objects connected by

a line are shared across the threads, then a deadlock may

manifest on some schedule. The lock acquisitions that cor-

respond to this deadlock are at lines 105, 107, 204 and 205.

Sequential tests I1 and I2 given in Figure 6(b) will not be

able to detect the possible deadlocks. Given the implemen-

tation in Figure 6(a), the goal is to synthesize multithreaded

tests to detect possible deadlocks in its usage.

The partial trace associated with the execution of the test

cases in Figure 6(b) is given in Table 2. The intermedi-

ate temporary variables are represented by v1, . . . , v6. The

enter events show that the methods have one additional el-

ement in the plist compared to the number of parameters

in the original method invocation in the source because we

insert the receiver object of the invocation as the first param-

eter. For example, e4 has three items in the plist whereas

foo takes two arguments and the first item in plist corre-

sponds to a1.
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σ(I1) σ(I2)
. . . . . .

e1: load(v1,null,a1) e′
1
: load(v1,null,b2)

e2: load(v2,null,a2) e′
2
: load(v2,null,a3)

e3: load(v3,null,b1) e′
3
: enter(e′

3
,bar,(v1,v2))

e4: enter(e4,foo,(v1, v2, v3)) e′
4
: store(v3,mutex,v1)

e5: alloc(b′) e′
5
: lock(v3)

e6: store(v4,mutex,v1) e′
6
: store(v4,mutex,v2)

e7: lock(v4) e′
7
: lock(v4)

e8: store(v5,mutex,v2) .

e9: lock(v5) .

e10: store(v6,mutex,v3) .

e11: lock(v6)

. . .

Table 2. Partial execution trace associated with Figure 6.

3.1.2 Lock dependency relation

In this subsection, we provide the rationale underlying the

design of the lock dependency relation before defining it.

Traditional object-sensitive cycle detection cannot be em-

ployed to detect problematic regions in the code. This is

because we propose to monitor the executions of single

threaded tests and the object instance identifiers across test

executions do not necessarily match. Therefore, the struc-

ture of the relation should be such that it can help decipher

the location of possible deadlocks even with data obtained

from multiple single-threaded tests. We propose to use type

of the locks to help achieve our goal.

Object−sensitive lock graphTestcase Lock type graph

a1.foo(a2, b2)

b2.bar(a1)
T1 T2a1.mutex b2.mutex

t2

t1 :

t2 :

t1 t1

t2

a1.foo(a2, b1)

b2.bar(a3)

a1.mutex b1.mutex

a3.mutex b2.mutex

T1 T2

t2

t1t1 :

t2 :

t1

t2

Figure 7. Example illustrating the benefits of using lock

types.

Figure 7 illustrates the benefits of using lock types in

a dependency relation. For the test case shown above the

dotted line, two threads, t1 and t2, invoke foo and bar

respectively. If we construct a traditional object-sensitive

lock graph, it will not have a cycle because the objects used

in the respective invocations are different. On the other hand,

the type of a1.mutex and a3.mutex is T1 and the type of

b1.mutex and b2.mutex is T2. Therefore, the lock type

graph that maintains the type identifier instead of the object

instance identifier has a cycle. We observe that this points

to a potential deadlock if the invocation context is setup

appropriately. This is confirmed by the example given below

the dotted line, where there is a cycle in both the graphs due

to the appropriate invocation context.

If the two threads in the test case shown above the dotted

line were to be considered individual single threaded tests,

we can still obtain a cycle on the lock type graph. Subse-

quently, we can use the detected cycle to identify the relevant

method invocations and the invocation context to synthesize

a test as shown by the multithreaded test given below the

dotted line.

The lock dependency relation is an elaboration of the

lock type graph to help synthesize a deadlock revealing

multithreaded test. A lock dependency relation D is a set

of lock nodes, where each lock node is an abstraction of a

lock acquisition, and is built to facilitate detection of cyclic

acquisitions. To facilitate the detection, we define the lock

node η = (τ,s,H,TI), where each element of the tuple is

described below:

• Lock type (τ ) : Represents the data type of the lock ob-

ject. Lock type is chosen to represent the lock acquisition

as we detect cyclic acquisition on types as discussed pre-

viously. This facilitates detection of possible deadlocks

across test cases even when there is no object sharing.

• Source location (s): Uniquely identifies the source loca-

tion where the lock is acquired. This enables differenti-

ation of two locks of the same type acquired at different

source locations as they can correspond to different de-

fects. For example, we want to differentiate between the

acquisitions at lines 204 and 209 in Figure 6, where the

locks acquired correspond to the same type T1.

• Held locks (H): Represents the set of locks that are cur-

rently held based on the order of acquisitions and is rep-

resented as a set of lock nodes. The entire history of locks

that are held, when the current lock is acquired, is en-

coded into H. This enables detection of lock acquisitions

made with distinct contexts. When it is not empty, it rep-

resents a nested lock acquisition.

• Test and trace location identifier (TI): Set of ordered

pairs (Ii,index), where Ii identifies the test case in the

testsuite and index gives the index of the lock acquisition

in the execution trace of Ii. If Ii acquires a lock on object

with type τ at source location s while holding the locks

corresponding to the lock nodes in H, then an ordered pair

(Ii,index) will be added to TI. This ensures that redun-

dant tuples representing the same locking scenarios from

different tests are not added as separate lock nodes to D.

Consequently, this helps improve the processing time due

to fewer lock nodes in D. However, maintaining a set as

opposed to just the first test that created η provides the

flexibility for our analysis to choose any one of the test

cases from the set for concurrent execution.

For ease of presentation, we will also use τ(η), s(η), H(η)
and TI(η) to refer to the four elements of tuple η.

We now explain the construction of the lock dependency

relation using the illustrative example from Figure 6. Ini-

tially D is empty. The invocation of method foo at line 14

by I1 results in multiple nested lock acquisitions. Initially, a

lock on a1.mutex is acquired at location 105. Accordingly,
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Figure 9. Illustration of cycle (η1, η2, . . . , ηk).

η8 = {T1, 210, {η7}, {(I2, e
′
16)}}

η2 = {T1, 106, {η1}, {(I1, e9)}}

η3 = {T2, 107, {η1, η2}, {(I1, e11)}}

η4 = {T2, 108, {η1, η2}, {(I1, e13)}}

η6 = {T1, 205, {η5}, {(I1, e22), (I2, e
′
7)}}

η5 = {T2, 204, {}, {(I1, e20), (I2, e
′
5)}}

η7 = {T2, 209, {}, {(I2, e
′
14)}}

η1 = {T1, 105, {}, {(I1, e7)}}

Figure 8. D after executing I1 and I2.

a new lock node, η1 = {T1,105,{},{(I1,e7)}}, is added to D.

The lock node corresponds to index e7 of the trace (shown

in Table 2) associated with I1 and hence (I1,e7) is added.

Subsequently, when a lock is acquired on mutex fields of pa-

rameters a and b, tuple η2 = {T1,106,{η1},{(I1,e9)}} and

η3 = {T2,107,{η1,η2},{(I1,e11)}} are added to D. Sim-

ilarly, tuple η4 = {T2,108,{η1,η2},{(I1,e13)}} is added

to capture the synchronization at location 108.

Figure 8 shows the set of all tuples that constitute D af-

ter the execution of I1 and I2. Observe that η5 and η6 have

{(I1,e20), (I2,e′5)} and {(I1,e22), (I2,e′7)} as the fourth ele-

ment respectively. Essentially, this means that the respective

lock nodes can be created by executing either I1 or I2.

3.2 Cycle detector

Identifying the combination of lock acquisitions that point

to a potential deadlock can be achieved by performing cycle

detection on the lock dependency relation, D. We describe

the process of cycle detection in this subsection.

We define a path, ρ = (η1, η2, ..., ηk), as a sequence of

lock nodes, where for each i ∈ [2, k], there exists some

η
f
i ∈ H(ηi)

3 such that τ(ηi−1) = τ(ηfi ). If there exists a

η
f
1 ∈ H(η1) such that τ(ηk) = τ(ηf1 ), then we consider the

path to be a cycle represented by θ.

We elaborate on these definitions using Figure 9. It shows

the nested acquisitions made by single threaded test cases

I′1, I
′
2, . . . , I

′
k. For example, I′1 makes a nested acquisition

by acquiring a lock on an object of type τ1 while holding a

lock on an object of type τk. The lock nodes corresponding

to the first and second acquisitions made by I′1 are repre-

3 f represents the first lock in a nested lock acquisition.

sented by nodes η
f
1 and η1 respectively. H(η1) contains η

f
1

to specify the nested acquisition. Similarly, other test cases

make nested acquisitions represented by η2, η3 . . . ηk re-

spectively. We can now construct paths to show the possi-

bility of object sharing. For example, observe the possibility

of object sharing between test cases, I′1 and I′2, because the

types of η
f
2 and η1 are equal to τ1. This possibility of sharing

creates a path from η1 to η2. Extending this further, we are

able to construct a path (η1, η2, ...ηk−1, ηk). We declare this

path to be a cycle because τ(ηk) = τ(ηf1 ) = τk.

Algorithm 1 Cycle Detector

Input: Lock dependency relation (D), Max cycle length (κ)

Output: Set of cycles (Θ)

1: i← 1
2: for every η ∈ D do

3: if H(η) 6= ∅ then D1 ← D1 ∪ {(η)}
4: ρ← concat((η),η)
5: if cycle(ρ) then Θ← Θ ∪ {ρ} end if

6: end if

7: end for

8: while (i < κ and Di 6= ∅) do

9: for every pair ρ ∈ Di , η ∈ D s.t. η 6∈ ρ do

10: /* concatenate a node to the path */

11: ρ′ ← concat(ρ, η)

12: if cycle(ρ′) then

13: if unique(ρ′,Θ) then Θ← Θ ∪ {ρ′}
14: end if

15: else if path(ρ′) then Di+1 ← Di+1 ∪ {ρ
′}

16: end if

17: end for

18: i← i+ 1
19: end while

The length of the path is given by the number of elements

in the sequence. We define Di as a set of paths with length

i and bound the maximum length of the cycle by a user-

tunable parameter κ. Having an upper bound on the length

of the cycle is appropriate from a practical perspective to

bind the running time of the algorithm.

We define auxiliary functions path and cycle which de-

termine whether a sequence of lock nodes is a path and cy-

cle respectively. Also, a cycle of length k can be represented

as k different lock node sequences (by rotating). Therefore,

given a set of cycles Θ and a candidate cycle θ, we define a
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function unique(θ,Θ) which checks whether cycle θ is not

already represented by some cycle in Θ. We define function

concat that takes a sequence and an element as input and

returns the concatenated sequence as output.

We present the approach for cycle detection in Algo-

rithm 1. It takes the lock dependency relation, D, and max-

imum cycle length, κ, as input and uses bottom-up dynamic

programming to find cycles. D1 is initialized to contain se-

quences of unit length where each sequence represents one

nested acquisition. Further, each node that has a path to it-

self forming a self loop is added to the set of detected cy-

cles (lines 4-5). Subsequently, in each iteration (lines 9-18),

we construct a path of length one higher than the path con-

structed in the previous iteration. For this purpose, each path

in Di is concatenated with a node contained in set D using

function concat. If the concatenated sequence forms a cy-

cle, then it is added to the set of detected cycles, Θ, as long

as none of the existing cycles in Θ represent the same cy-

cle. This is achieved by using the unique function. If the

sequence only qualifies as a path, then it is added to the set

Di+1. The process terminates when no new paths are con-

structed in an iteration or the number of iterations exceed

κ.

D1 {(η2), (η3), (η4), (η6), (η8)}
D2 {(η2, η3), (η2, η4), (η6, η2), (η8, η2)}
Θ {(η2, η2), (η3, η6), (η3, η8), (η4, η6), (η4, η8)}

Table 3. Paths and cycles generated by executing Algo-

rithm 1 with D from Figure 8 and κ = 2.

We will use the D shown in Figure 8 to demonstrate the

working of Algorithm 1. D1 is initialized to a set of unit

length sequences as shown in Table 3. Every node is also

checked for a self loop. Node η2 forms a self loop as it

acquires a lock on object of type T1 while holding a lock on

object of type T1 (specified by node η1). Therefore, sequence

(η2, η2) that forms a path as well as a cycle is added to

Θ. Subsequently, other paths of length two are constructed.

For example, sequence (η3, η6) satisfies the property of a

cycle. This is because there exists η5 ∈ H(η6) such that

τ(η3) = τ(η5), and there also exists η2 ∈ H(η3) such that

τ(η6) = τ(η2). Similarly, other paths of length two that also

form a cycle are constructed and added to Θ. Paths that do

not qualify as cycles are added to D2 as shown in Table 3. At

the end of the loop, D2 contains four paths and Θ contains

five cycles. The execution terminates as κ is set to 2.

3.3 Synthesizer

Armed with the detected cycles and the logged execution

traces, the Synthesizer attempts to transform the cycles

into potential deadlocks. To accomplish this, it detects the

method invocations in the test cases responsible for the cre-

ation of the input cycle. It also outputs the necessary addi-

tional constraints that need to be satisfied by these method

invocations to create a possible deadlock. Therefore, for ev-

ery input cycle, the Synthesizer detects the sequence of

method invocations along with a list of test cases that make

these invocations. It also outputs constraints on the parame-

ters used in these method invocations. If these methods are

invoked concurrently by distinct threads satisfying the gen-

erated constraints, then a deadlock may manifest.

3.3.1 Overview

For each cycle, θ = (η1, η2, ..., ηk), the lock nodes repre-

sent nested lock acquisitions. Each nested lock acquisition,

ηi, is associated with invoking some method m from one of

the tests in the seed testsuite (I). We construct the initial se-

quence of methods (M) for θ by collecting all the invoking

methods. Subsequently, for each method m ∈ M, we gener-

ate constraints such that invoking m while satisfying the con-

straints will create a cyclic lock acquisition on lock objects.

Broadly, we perform the following steps for a detected cycle:

1. For each η ∈ θ, identify the associated method invocation

(represented by m) in I.

2. Identify the parameters of m, on which the lock acqui-

sitions represented by the nodes in θ are data dependent.

This will enable our analysis to alter the lock acquisitions

to manifest the cycle.

3. Infer constraints on the parameters of all m ∈ M such that

invoking the methods in M while satisfying the constraints

on the parameters can lead to a deadlock.

Consider the cycle (η3, η6) detected in the running exam-

ple from Figure 6. To transform the input cycle (η3, η6) into

a deadlock, the goal of the Synthesizer is to derive the

following:

• foo and bar are the two methods that need to be invoked

concurrently by different threads.

• The first4 and third parameters (a1,b1) of foo and the

first and second parameters (b2,a3) of bar are interesting

as they can influence the lock acquisitions that create the

cycle. This is because a lock is acquired on the mutex

fields of objects represented by these parameters.

• The object sharing across threads must be such that

a1.mutex and b1.mutex need to be equal to a3.mutex

and b2.mutex respectively.

In the subsequent subsections, we describe the process of

deriving the above information.

3.3.2 Identifying method invocations

Algorithm 2 provides an approach to identify method invo-

cations that can lead to a potential deadlock. The algorithm

takes as input a cycle, θ = (η1, η2, ..., ηk), and the execu-

tion traces. For each node η in the cycle, it obtains the test

that caused the node to be constructed and finds the corre-

4 Recall that we refer to the receiver as the first parameter of a method.
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Algorithm 2 Method Invocation Identifier

Input: Cycle (θ), Execution Traces (Σ)

Output: Method Invocation Index sequence (MI),

Test sequence (IM), Invoked Method Sequence (M)

1: for every η ∈ θ do

2: Iη ← test case retrieved from TI(η)

3: σ ← Execution trace of Iη
4: index← trace index of nested lock acquisition in σ

5: for index > 0 do /* Find required method invocation*/

6: if σ[index] is enter and is invoked in Iη then

7: m ← method invoked at σ[index]
8: MI← concat(MI,index)

9: IM ← concat(IM,Iη)

10: M ← concat(M,m)

11: index← 0 /* exit loop */

12: end if

13: index← index−1
14: end for

15: end for

sponding execution trace ση . The location of the nested ac-

quisition in the execution trace is obtained from TI(η) and

is represented by index (lines 2-4). We analyze the trace

backwards and identify the closest enter method event that

corresponds to a method invocation from the test case Iη
(lines 5-15). The parameters can be manipulated for this

method as the invocation of this method is within the test

case and is not in the library implementation. The index of

this method invocation is added to a method invocation index

sequence MI, the test case responsible is added to the test se-

quence IM and the signature of the invoked method is added

to the invoked method sequence M. When all the nodes in the

cycle are processed, the algorithm outputs the sequences MI,

IM and M.

We illustrate the process of applying Algorithm 2 on cy-

cle (η3, η6) shown in Table 3. From TI(η3) shown in Fig-

ure 8, we find that the test responsible for creating η3 is I1.

Our approach performs a backward search on the execution

trace associated with I1 (see Table 2) and obtains the invo-

cation of method foo at index e4. The method invocation

index sequence MI is updated to (e4), IM is updated to (I1)

and the sequence M is updated to (foo). For node η6, the

algorithm can choose either one of the test cases, I1 or I2
(see Figure 8). Assume the algorithm picks I2 and searches

the execution trace corresponding to I2, it will identify the

invocation of bar at index e′3 (see Table 2) and updates the

output sequences MI, IM and M appropriately. As all nodes in

the cycle are processed, the output of the algorithm for the

cycle will be MI = (e4, e′3), M = (foo,bar) and IM = (I1, I2).

3.3.3 Identifying relevant parameters

For cycle θ = (η1, η2, ..., ηk), we already have the sequence

of method invocations (MI), the sequence of methods (M)

and the sequence of tests that make the invocations (IM).

Until now, for ease of explanation, we just used the second

lock node of a nested acquisition while defining θ without

specifying the first lock node. A nested acquisition ηi can

be decomposed into two lock nodes and can be represented

as η
f
i → ηi as shown in Figure 9, where η

f
i and ηi are the

first and second lock nodes respectively. We define function

firstlock for a given cycle θ and node ηi, which returns a

set of nodes that can be potentially used as η
f
i .

For every nested lock acquisition, we can pick one of the

nodes from the set of nodes returned by firstlock(θ, ηi)
as the first lock node and use ηi as the second lock node. For

example, if we consider the cycle θ = (η3, η6) and consider

the nested lock acquisition η3, the firstlock(θ,η3) will

return {η1,η2} because the first lock in the nested acquisition

can correspond to either of these nodes as they have the

same type T1. The second lock node is η3. Given the first

and second lock nodes, the goal now is to determine the

data dependence of the lock acquisitions to the appropriate

parameters in the method invocation.

b : V ar ∪ {⊥} F : field× field× · · · × field

em : int p : int ∪ {⊥, err}

b = ⊥ F = ∅ p = ⊥ b′ = x

{b, F, em, p}
lock(x)
−−−−→ {b′, F, em, p}

(LOCK)

b = x F = f ⊕ F′ p = ⊥ b′ = y

{b, F, em, p}
load(x,f,y)
−−−−−−−→ {b′, F′, em, p}

(LOAD)

b = x F′ = f ⊕ F p = ⊥ b′ = y

{b, F, em, p}
store(x,f,y)
−−−−−−−→ {b′, F′, em, p}

(STORE)

b = x p = ⊥ p′ = err

{b, F, em, p}
alloc(x)
−−−−−→ {b, F, em, p

′}
(ALLOC)

p = ⊥ plist[p′] = b em = iid

{b, F, em, p}
enter(iid,m,plist)
−−−−−−−−−−−→ {b, F, em, p

′}
(ENTER)

{b, F, em, p}
∗
−→ {b, F, em, p}

(OTHER)

Figure 10. Rules for identifying the relevant parameters. ⊕
is concatenation of an element to a sequence.

We perform a backward analysis of events in the exe-

cution trace starting from the location corresponding to the

lock acquisition under consideration to derive the parame-

ter that can influence the lock object. The set of rules for

this processing is given in Figure 10. For each lock node, we

maintain a parameter state, P = {b, F, em, p}, where

• b is a variable representing the base object. It is initialized

to ⊥.

• F is a sequence of field variables representing the list of

field dereferences on b.
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• em is the index of the method invocation m that caused the

nested acquisition η and is obtained from Algorithm 2.

• p is the index of the parameter in the plist associated

with the method invocation at index em. It is also initial-

ized to ⊥. A value of err for p represents that the lock

cannot be manipulated from the method invocation.

Intuitively, the tuple P represents the object obtained when

b is dereferenced with fields present in F.

The typing rules are straight forward. Initially, the lock

event corresponding to creation of the lock node under con-

sideration is processed using the LOCK rule. Subsequent

lock events will not match the rule because either b or p

will not be⊥. The LOAD operation updates the base and field

dereferences appropriately. If the event is created by assign-

ment x := y, then the base alone is updated. Otherwise, if

assignment x.f = y is responsible for the event, base and

field dereferences are updated. The STORE is very similar

to LOAD. If an alloc event on a variable that is also cur-

rently the base is reached, then it implies that there is no

relevant parameter to be found. This points to a local allo-

cation within the implementation of the library that cannot

be influenced by the client program. Therefore, p is updated

to err. The ENTER rule is applied when the event associ-

ated with the method of interest (em) is reached where the

parameter index is obtained based on b.

We now illustrate the application of the typing rules on

cycle θ = (η3, η6) from the running example (see Figures 6

and 8). Both η3 and η6 are nested lock acquisitions. We

have firstlock(θ, η6) = {η5} and firstlock(θ, η3) =
{η1, η2}. Because the latter has two elements, we can select

any one of the two elements and let us assume that η1
is selected as the first lock in the nested acquisition η3.

Therefore, we need to identify the parameters influencing

the lock acquisitions represented by η1 and η3 for the nested

acquisition η3, and the lock acquisitions represented by η5
and η6 for the nested acquisition η6. We will describe the

application of the typing rules to track the parameter for η3.

The rules can be applied for η1, η5 and η6 similarly.

...

...{⊥, ∅, e4,⊥}

{v1, (mutex), e4, 1}

{v4, ∅, e4,⊥}

e10 : store(v6, mutex, v3)

e11 : lock(v6)
{v6, ∅, e4,⊥}

{v1, (mutex), e4,⊥}

{v3, (mutex), e4,⊥}

e9 : lock(v5)

e8 : store(v5,mutex,v2)

e7 : lock(v4)

e6 : store(v4, mutex, v1)

e5 : alloc(b′)

e4 : enter(e4, foo, (v1, v2, v3)

{v3, (mutex), e4, 3}

{⊥, ∅, e4,⊥}

Figure 11. Parameter tracking for η3 and η1 using σ(I1).

Figure 11 illustrates the application of typing rules on

η3. The associated execution trace is given in Table 2. For

lock node η3, the index in the execution trace is e11 and

is the first element to be processed. Initially, the state is

{⊥, ∅, e4,⊥}. We obtain the method invocation index as

e4 for the nested acquisition η3 from the previous phase,

where relevant method invocations are identified. The LOCK

rule matches the current state and hence is applied to tran-

sition the state to {v6, ∅, e4,⊥}. We process the trace in

the reverse order and will analyze the element at index

e10. STORE is applied on this element to obtain the state

{v3, {mutex}, e4,⊥}. For the rest of the elements up to

(and including) e5, there is no change in the state. When

e4 is processed, ENTER is applied to obtain the output state

{v3, {mutex}, e4, 3} for η3, where 3 is the index into the

plist of e4. This essentially means that we detect that the

third parameter of foo in Table 2 as influencing η3. The fig-

ure also depicts the transitions for η1 given by the arrows

on the right side and is self explanatory. The final parameter

states for all the relevant nodes in the cycle under consider-

ation is given in Table 4.

Nested Acquisition P (ηf ) P (η)
(ηf → η)

η1 → η3 {v1,(mutex),e4,1} {v3,(mutex),e4,3}
η5 → η6 {v1,(mutex),e′3,1} {v2,(mutex),e′3,2}

Table 4. Output of parameter tracking for cycle (η3, η6).

3.3.4 Constraint Generation

For the detected cycle, we have described the approach to

identify the relevant method invocations and the appropriate

parameters that can influence the lock acquisition in the

previous two subsections. The goal of this subsection is

to generate constraints on the parameters of these method

invocations so as to manifest a deadlock. Intuitively, for a

deadlock to manifest, the second lock acquired by one thread

needs to be the same as the first lock acquired by another

thread.

For a cycle, θ = (η1, η2, ..., ηk), where each nested lock

acquisition ηi can be represented as η
f
i → ηi, the following

constraint set (C) is generated for all i ∈ [1, k]:

• P (ηi−1) ≡ P (ηfi ), if i ∈ [2, k]

• P (ηk) ≡ P (ηfi ), otherwise

A constraint P (ηi) ≡ P (ηj) indicates that P (ηi) and P (ηj)
must represent the same object. In other words, the param-

eter bi passed to invocation at emi when dereferenced with

fields contained in Fi and the parameter bj passed to invo-

cation at emj when dereferenced with fields contained in Fj
must represent the same object.

For the cycle (η3, η6) from the running example, we gen-

erate C = {P (η3) ≡ P (η5), P (η6) ≡ P (η1)}. Table 4 al-

ready gives the final states of P for the relevant lock nodes.

The generated constraints imply that the object correspond-

ing to the mutex field of the first parameter of foo must be
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equivalent to the object corresponding to the mutex field of

the second parameter of bar. Similarly, the objects corre-

sponding to the mutex fields of the third parameter of foo

and the first parameter of bar must be equivalent.

After achieving the goals mentioned in Section 3.3.1, we

now use the obtained information to describe the process of

generating a deadlock revealing test case.

3.4 Generator

For each cycle, the Generator uses the data generated from

the previous phases to synthesize a multithreaded test. It

takes the sequence of test cases, method signatures and

method invocation indices (IM, M, MI obtained from Algo-

rithm 2) and a set of constraints (C derived in Section 3.3.4)

as input and constructs a test case which spawns concurrent

threads, where each thread invokes a method in M.

Input:

Sequence of test cases (IM), Sequence of methods (M),

Sequence of invocation indices (MI), Constraint set (C).
Synthesized test:

1 O ← ∅;
2 for every test case Ii in IM do

3 Oi ← collectobjects(Ii, MI[i]);
4 done

5 for every constraint Ci(Pi ≡ Pj) in C do

6 d← p(Pi); s← p(Pj);
7 Fd ← F(Pi); Fs ← F(Pj);

8 o′ ← enforce(Oi[d], Fd,Oj [s], Fs);
9 if o′ 6= null then reinitialize Oi[d] with o′;

10 else declare infeasible and exit;

11 end if

12 end for

13 for every method mi in M

14 invoke mi with Oi as parameters from a new thread;

15 end for

Figure 12. Skeleton of synthesized multithreaded test.

We need to obtain appropriate objects that can be passed

as parameters to the method invocation which also satisfy

the constraints. Because, we already have the sequential test

cases that construct the objects for method invocations, we

execute the sequential test cases as part of the multithreaded

test case to collect the objects. Subsequently, constraints

are enforced on the collected objects before passing them

as parameters to the method invocations in the spawned

threads.

Figure 12 presents the generic structure of the synthesized

test. Initially, it collects the objects from tests in IM with

the help of method collectobjects (lines 2-4). Method

collectobjects executes the sequential test input to it and

allows the test to proceed until the required objects are col-

lected. After collecting the objects, it terminates the execu-

tion of the test to ensure that the state of the collected objects

are unmodified. The constraints in C are enforced between

lines 5-12 by the enforce algorithm presented in Algo-

rithm 3 and will be discussed subsequently. Due to the avail-

ability of the necessary invocation context, multiple threads

(depending on the number of edges in the cycle) are spawned

(lines 13-15) and each thread invokes relevant methods with

the appropriate objects. Analyzing the execution of the syn-

thesized multithreaded test using a dynamic deadlock de-

tector (e.g., iGoodLock) will enable detection of potential

deadlocks. OMEN reports the synthesized multithreaded test

and the detected deadlocks.

We now explain the working of method enforce pre-

sented in Algorithm 3 which is used to enforce constraints.

The goal of this algorithm is to take two object instances

and construct an object which is shareable across multiple

threads. The method takes source and destination objects

along with the field dereferences as input and outputs a mod-

ified object (or null). As the first step, it dereferences the

source object (os) with fields in Fs and makes an assignment

to the pointer obtained by dereferencing the destination ob-

ject (od) with fields in Fd. It is not necessary that such an

assignment is always feasible. For example, private fields in

the library cannot be assigned from a client. If the assign-

ment is feasible, it performs the relevant object assignments

(line 2). Otherwise, it checks whether the object assignment

can be performed for the owner objects (lines 4-8) by invok-

ing enforce with modified Fs and Fd recursively. This may

also be infeasible as the types of the owner objects may be

incompatible. This process continues until a feasible assign-

ment is made and the modified destination object od is re-

turned subsequently. If a feasible assignment is not possible,

a null is returned suggesting the infeasibility of synthesizing

a test.

The underlying reason for checking the feasibility of as-

signments recursively is to be less disruptive. For example,

consider a lock is obtained on o1.f1.f2 in one test and a lock

is obtained on o2.f1.f2 in another test and the constraint is

that these objects need to be shared. We can perform any

one of the following three assignments (if they are feasible):

(a) o1.f1.f2 = o2.f1.f2, (b) o1.f1 = o2.f1 and (c) o1 = o2.

Among these assignments, the first assignment is the least

disruptive change that can be made to satisfy the necessary

constraint. If assignment (a) is infeasible, then (b) is consid-

ered. If assignment (b) is also infeasible, then (c) is consid-

ered.

We explain Figure 12 for cycle (η3, η6) from the running

example. From the output of the Synthesizer, we get MI =

(e4, e′3), IM = (I1, I2) and the constraint set C = (P (η3) ≡
P (η5), P (η6) ≡ P (η1)). Initially, I1 is executed until the in-

vocation of foo at e4 and the objects (a1, a2, b1) associated

with the invocation are collected into O1, as shown in Fig-

ure 13(a). Similarly, I2 is executed and the objects associ-

ated with the invocation of bar at e′3 are collected intoO2, as

presented in Figure 13(b). We then need to enforce the gen-

erated constraints. For the constraint P (η3) ≡ P (η5), the ap-
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Algorithm 3 enforce

Input: od : Destination object, Fd : (f1

d , f
2

d , ...f
m
d )

os : Source object, Fs : (f1

s , f
2

s , ...f
n
s )

Output: modified object or null

1: if od.f
1

d .f
2

d ...f
m
d ← os.f

1

s .f
2

s ...f
n
s is feasible then

2: od.f
1

d .f
2

d ...f
m
d ← os.f

1

s .f
2

s ...f
n
s ; Return od;

3: else if fm
d 6= null & fn

s 6= null then

4: if typeOf(fm
d ) = typeOf(fn

s ) then

5: F′d ← (f1

d , f
2

d , ...f
m−1

d )

6: F′s ← (f1

s , f
2

s , ...f
n−1

s )

7: Return assign (od, F′d, os, F′s)

8: end if

9: end if Return null
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Figure 13. Object assignments for the parameters

proach calls enforce(b1, (mutex), b2, (mutex)) resulting in

the assignment of x4 to b1.mutex, as shown in Figure 13(c).

Similarly, the other assignment for P (η6) ≡ P (η1) is per-

formed. Subsequently, the test spawns two threads which in-

voke methods foo and bar with the appropriate objects as

parameters. Since the objects are now shared across threads,

a dynamic deadlock detector can analyze the execution and

detect a potential deadlock.

4. Implementation

We have implemented OMEN in Java to synthesize mul-

tithreaded tests for Java libraries. The implementation

uses the soot [26] bytecode analysis framework. We use

iGoodLock [14] to detect deadlocks on the synthesized test

executions. Many of the implementation choices in our tool

are driven by practical considerations. We discuss a few of

them in this section.

Instrumentation: We instrument the program using soot

to generate the execution traces. We identify the relevant op-

erations including lock, unlock, method entry, method exit,

loads and stores of the variables and fields and insert hooks

to generate the trace elements as defined in Section 3.1.1. We

define the load and store events in the trace with a maximum

of one level of field dereference. Therefore, we emit multi-

ple level of dereferences in the source program as multiple

loads or stores involving temporary variables. For exam-

ple, a dereference a.f1.f2 is considered as two operations

(v1 = a.f1, v2 = v1.f2) and appropriate loads and stores are

emitted.

Cycle detection:

• We define a path and a cycle based on the equality of

the corresponding types. In our implementation, we also

consider the sub-typing relation and consider the types to

be equal even if one is a subtype of the other.

• Each cycle θ = (η1, η2, ...ηk) can encode multiple dead-

locks depending upon the number of lock nodes present

in each set returned by firstlock(θ, ηi). For ease of ex-

planation, we used one lock node from the set of first lock

nodes and explained one possible deadlock. In our imple-

mentation, we search for all potential deadlocks encoded

by the cycle. The count of the potential deadlocks given

by a cycle is a product of the number of elements in each

set returned by firstlock(θ, ηi), where i ranges from 1
to k.

• If the nested acquisitions are guarded by the same static

or shared lock, then such guard locks can be a source of

imprecision for our analysis. Our implementation does

not handle them and may synthesize unnecessary tests.

However, when iGoodLock [14] analyzes the synthe-

sized tests, it will not report any potential deadlocks and

the associated imprecision is eliminated.

• Multiple test cases can generate the same lock node (e.g.,

η3 from Figure 8) and our analysis picks a random test

case to identify the method invocation corresponding to

the creation of the lock node. A poor choice of the test

case may result in OMEN not being able to synthesize a

test even in the presence of a possible deadlock. Our

implementation can easily be extended to explore other

choices of test cases when it fails to synthesize a test.

Tracking parameters: The locks under consideration may

be influenced by other method invocations instead of the cur-

rent invocation. For example, a constructor may set a field

before the lock is acquired in a method invoked from the

client. In this context, our analysis will be unable to synthe-

size a test. Furthermore, our implementation does not handle

aliasing and collections. This may result in imprecision of

the analysis where OMEN will fail to synthesize multithreaded

tests. However, our experimental results do not show any im-

precision due to these issues.

5. Evaluation

We analyze multithreaded Java libraries to evaluate OMEN.

All the experiments are conducted on an Ubuntu-12.04

desktop running on a 3.5 Ghz Intel Core i7 processor with

16GB RAM. The information pertaining to the benchmarks
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ConTeGe OMEN

Class name |D| |Σ| Time (in secs) |Θ| |CMI| Final Output

Tests Time(s) DL S G DD Tests DL TP

DynamicBin1D 4400 4036 0 64 1025K 352 16 32 36 36 6 36 21

CharArrayWriter 4269 2425 0 12 94K 12 2 2 1 1 1 1 1

ClosableByteArrayOutputStream 3105 2287 0 25 188K 25 2 5 1 1 1 1 1

ClosableCharArrayWriter 2758 2100 0 25 158K 20 2 4 1 1 1 1 1

HashTable 4218 2355 0 28 553K 79 6 26 28 21 15 20 19

Stack 4094 3139 0 46 219K 38 4 11 1 1 1 1 1

ByteArrayOutputStream 3901 2002 0 15 146K 20 2 2 1 1 1 1 1

MonitoredObjectImpl - - - - - - - - - - - - -

Total 0 26 61 45

Table 6. Experimental results with IR as the seed testsuite. D: Lock Dependency Relation, Σ: Execution traces, S: Cycle

Detection and Parameter Synthesis, G: Generator, DD: Deadlock Detection, Θ: Detected cycles, CMI: Concurrent

Method Invocations, DL: Deadlocks, TP: True Positives.

Class name Version LoC |Mtotal|
DynamicBin1D colt-1.2.0 8033 35

CharArrayWriter classpath-0.98 59 13

ClosableByteArrayOutputStream hsqldb-2.3.2 77 22

ClosableCharArrayWriter hsqldb-2.3.2 88 22

HashTable jdk1.7 1131 20

Stack jdk1.7 501 5

ByteArrayOutputStream jdk1.7 33 10

MonitoredObjectImpl jdk1.7 189 14

Table 5. Benchmark Information. LoC: lines of code across

classes covered by test cases. |Mtotal|: number of public

methods in the class.

used for our experiments is given in Table 5. colt is a high

performance scientific computing library, classpath con-

tains core class libraries for use with virtual machines and

compilers, hsqldb is a leading SQL relational database soft-

ware in Java, and jdk is the Java Development Kit. Among

the analyzed classes, DynamicBin1D is declared as thread

safe in its documentation. For the other classes, the results

of our approach provide various ways that client code could

deadlock, if the locks are not appropriately acquired before

invoking the methods in the cycle. For our experiments, we

set κ = 2.

We evaluate the effectiveness of OMEN across the follow-

ing dimensions:

1. Ability to automatically synthesize deadlock revealing

multithreaded tests compared to ConTeGe [22].

2. Ability to synthesize tests with a seed testsuite that is

developed by third-party developers.

3. Ability to synthesize tests with a seed testsuite that con-

tains sequential tests invoking all methods in the class

implementation.

We now describe our experimental results for each of the

above dimensions.

5.1 Automated synthesis

We provide just the class that needs to be tested as input

to OMEN and generate a seed testsuite using Randoop [20].

Randoop generates sequential tests that test the various

methods of the class and add them to the seed testsuite (IR).

The total number of tests in IR is limited to 500. After per-

forming the various phases of the analysis on the input class,

OMEN synthesizes multithreaded tests. The precise numbers

are tabulated in Table 6.

In Table 6, we observe that a total of 26 multithreaded

tests are synthesized across all the benchmarks as final out-

put. These tests are executed and the executions analyzed us-

ing iGoodLock [14] which reports a list of deadlocks. How-

ever, OMEN eliminates redundant deadlocks and reports 61

unique5 deadlocks across all benchmarks. Out of these 61

deadlocks, 45 are real deadlocks. If the client programs in-

voke the methods in these classes without appropriate syn-

chronization, their executions can deadlock. We also in-

creased the maximum length of a cycle (κ) to five. OMEN did

not detect any new deadlock across all the benchmarks. We

also did not notice any significant increase in the analysis

time because the maximum number of lock nodes in D is

64.

In comparison, the number of tests that ConTeGe gener-

ates ranges from 2758 to 4400 and the execution time varies

from 2002 to 4036 seconds. In spite of that, ConTeGe [22]

is unable to detect a deadlocking scenario in any of these

classes. Both our tools use the tests generated by Randoop

as the seed testsuite. As we discussed earlier, ConTeGe is

unable to make effective use of the seed testsuite as it ran-

domly synthesizes concurrent executions. We attribute the

effectiveness of our approach to the directed nature of syn-

thesizing tests.

The number of cycles detected by the Cycle Detector

varies from 1 to 36. The Synthesizer operates on these cy-

cles and the execution traces to synthesize a set of concurrent

method invocation sequences (represented by CMI), where

the number of elements in the CMI ranges from 1 to 36. For

most benchmarks, the number of such sequences is equiva-

lent to the cycles detected. However, seven cycles cannot be

5 For example, in Table 1, OMEN considers deadlocks 2 and 3 as the same

deadlock and reports them as one possible deadlock.
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ITP IMS
Class name Time (in secs) |Θ| |CMI| Final Output Time (in secs) |Θ| |CMI| Final Output

S G DD |T| DL TP S G DD |T| DL TP

DynamicBin1D 89 12 32 66 21 15 55 35 68 12 29 91 55 10 55 35

CharArrayWriter 2 0.4 2 1 1 1 1 1 2 0.3 2 1 1 1 1 1

ClosableByteArrayOutputStream 3 0.4 2 1 1 1 1 1 2 0.4 2 1 1 1 1 1

ClosableCharArrayWriter 3 0.4 3 1 1 1 1 1 2 0.4 2 1 1 1 1 1

HashTable 13 3 10 3 3 1 3 2 13 2 14 28 21 15 20 19

Stack 17 - - 0 0 0 0 0 13 2 9 1 1 1 1 1

ByteArrayOutputStream 2 0.4 2 1 1 1 1 1 2 0.3 2 1 1 1 1 1

MonitoredObjectImpl 7 1 2 1 1 1 1 1 6 1 2 1 1 1 1 1

Total 21 63 42 31 81 60

Table 7. Experimental results, – S: Cycle Detection and Parameter Synthesis, G: Generator, DD: Deadlock

Detection, Θ: Detected cycles, CMI: Concurrent Method Invocations, |T| : Tests generated, DL: Deadlocks, TP: True Posi-

tives.

synthesized into method invocations for HashTable. This is

because of lock acquisitions on local objects. As a result, the

client of the class cannot manipulate the parameters to the

method invocation appropriately. Hence, the detected cycle

can be discarded as it cannot manifest as a deadlock. The

Generator uses the elements in the CMI to synthesize mul-

tithreaded tests. There is a reduction in the number of tests

from the number of elements in the CMI in DynamicBin1D

because many concurrent method invocations share the same

constraints.

The number of nodes generated in the lock dependency

relation, D, ranges from 12 to 64. The size of the exe-

cution traces is significantly high (e.g., approximately 1M

for DynamicBin1D) due to the number of load and store

events generated for all the 500 tests. The processing time

for Cycle Detector and Synthesizer is a function of

the size of D and Σ for each benchmark. The maximum

time is taken by DynamicBin1D as it has the largest |D|
and |Σ|. The processing time for the Generator is relatively

low because it just needs to synthesize a multithreaded test

based on the constraints derived previously. The time to de-

tect deadlocks is associated with executing the synthesized

tests and analyzing the execution with the deadlock detector.

In summary, the total time for using the tool does not exceed

seven minutes for any of the benchmarks. When compared to

the complexities associated with manually reasoning about

the possibility of deadlocks, the ineffectiveness of ConTeGe

to detect problems and the overall size of the state space, the

time taken by OMEN is insignificant.

We also observe that there are 45 true positives among 61
detected deadlocks. The underlying imprecision is due to the

employed deadlock detector. We are in the process of inte-

grating OMEN with WOLF [23], a deadlock detector and repro-

ducer designed by us, which will not only detect the dead-

locks but will also reproduce the deadlocks automatically.

Our approach also suffers from false negatives as it based

on dynamic analysis. For example, we are unable to detect

potentials deadlocks in MonitoredObjectImpl. It is nec-

essary for our approach to analyze some executions, prefer-

ably with reasonable coverage from a sequential perspec-

tive, to synthesize deadlock revealing multithreaded tests.

Randoop is unable to generate any method sequences for

MonitoredObjectImpl. In such scenarios where automatic

sequential program test generators like Randoop do not pro-

vide sufficient coverage, our approach can fall back on man-

ually developed seed testsuite. We now discuss the impact of

using manually developed tests with OMEN.

5.2 Manually written seed testsuite

We also evaluated our approach when the seed testsuite is

developed by third-party programmers. Moreover, we also

study the effectiveness when a seed testsuite with good cov-

erage is provided by using the testsuite developed by the first

author.

5.2.1 Seed testsuite from third-party developers

We obtained sequential and multithreaded test cases for the

classes under consideration from developers who are not

associated with our project or with the development of the

libraries under consideration. The four volunteers for our

experiments include two graduate students, a researcher and

a software engineer.

We executed the multithreaded tests developed by the vol-

unteers and analyzed them using iGoodLock [14]. The de-

tector did not report any deadlock across all the benchmarks.

Subsequently, we used the set of sequential tests as the seed

testsuite (ITP) and applied OMEN to synthesize multithreaded

tests. Table 7 presents the corresponding data.

OMEN is able to detect more deadlocks for DynamicBin1D

with ITP as the seed testsuite compared to IR. This is be-

cause the tests developed by the users cover the method

sampleBootstrap (see Figure 2). Randoop had missed

generating a sequential test for this method and therefore

our analysis had missed detecting a few defects. Our anal-

ysis is able to leverage good sequential coverage provided

by ITP and is able to decipher the deadlocks quickly. Even

though the volunteers were not familiar with DynamicBin1D

(colt), we are able to use simple sequential tests to synthe-

size multithreaded tests that enable deadlock detection. Re-
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call that the deadlock detector did not find any defects on the

multithreaded tests developed by the volunteers.

The downside to writing manual tests is that they need

not provide good coverage under all circumstances. With ITP
as the seed testsuite, fewer deadlocks are detected in Stack

compared to IR as the seed. In this case, the volunteers’ tests

could not drive the objects to the required state whereas

Randoop generated sequential tests that are able to drive

the executions effectively. Manually perusing the tests, we

observed a significant difference in the quality of the tests (in

terms of coverage) written by the volunteers. As a result, we

wanted to compare the effectiveness of our approach when

the seed testsuite has good coverage. We present the findings

in the next subsection.

5.2.2 Seed testsuite from the first author

To generate a seed testsuite with good coverage, the first au-

thor took all the public methods in the classes under con-

sideration and developed single-threaded tests invoking the

methods. These tests are made part of the seed testsuite (IMS)

and form the input to OMEN. Table 7 presents the numbers

corresponding to the synthesized multithreaded tests and the

deadlocks detected. Because the testsuite has good cover-

age of the various methods, the results of our approach are

also significantly better. OMEN is able to detect 81 deadlocks

across all benchmarks and our manual analysis shows that

60 detected deadlocks are true positives.

In practice, we believe that most robust software library

implementations have tests that provide good coverage of the

various features. However, the tests need not necessarily be

effective for detecting deadlocks (or other concurrency de-

fects) because of the complexities associated with reasoning

about them. We believe deployment of OMEN to synthesize

multithreaded tests in such scenarios will significantly im-

prove the quality of the libraries and make it a valuable tool

in the software development process.

6. Related Work

To the best of our knowledge, the closest effort to automat-

ically generate tests to detect concurrency violations is by

Pradel and Gross [22]. In ConTeGe [22], the authors describe

a design for randomly generating method invocations that

can be executed concurrently. Subsequently, if a concurrent

execution results in an exception and none of the correspond-

ing linearized executions fail, then a thread safety violation

is reported. One of the drawbacks of their approach is in

generating random method invocations to detect these vio-

lations. There can be a number of method invocations and

invocation contexts which can be completely irrelevant from

the perspective of detecting bugs. We address this drawback

by proposing a directed approach for identifying the method

invocations and creating an appropriate invocation context

that will enable deadlock detection.

Eslamimehr and Palsberg [7] propose a technique based

on integrating concolic execution with race detection [8].

This increases the number of detected races due to increased

code coverage. Our tool, OMEN, differs from their approach

in terms of the intended application (race detection vs dead-

lock detection) and the nature of the employed analysis. We

leverage the data from dynamic analysis engines to generate

tests that can expose defects.

Many dynamic analysis approaches [3, 13, 14, 23, 28]

are designed for detecting deadlocks. In [23], we designed

a precise technique for detecting and reproducing deadlocks

using dynamic analysis. Joshi et al. [14] proposed the con-

cept of active testing for dynamic deadlock detection and

use randomization to reproduce deadlocks. Cai and Chan [3]

reduce the overhead of cycle detection by maintaining a

pruned lock dependency graph. ConLock [28] identifies spe-

cific scheduling constraints that need to be maintained for

deadlocks to be reproduced reliably. Generalized deadlocks

involving communication patterns can be detected using the

dynamic analysis designed by Joshi et al. [13]. All these

approaches are fundamentally dependent on the quality of

the analyzed executions to efficiently detect deadlocks. Our

approach for automatically synthesizing multithreaded test

cases complements these techniques. In fact, our current im-

plementation is already integrated with iGoodLock [14].

A number of elegant techniques have been proposed [9,

12, 19, 20, 24, 25] for testing sequential programs to increase

code coverage. We propose an automatic test synthesis for

multithreaded libraries that can leverage these techniques

and therefore stands to gain from the advances made for

sequential test generation.

Static analysis has been used to detect deadlocks [5, 15,

18, 27]. The false positive rate can be significant with static

analysis based approaches [14]. More significantly, the de-

fect report needs to be manually triaged to verify its correct-

ness. Multithreaded test synthesis makes this process less

cumbersome.

Concurrency testing frameworks [6, 11] can be used to

develop better tests for the seed testsuite of our approach.

We believe integration of our approach with systematic state

space explorers [16, 17, 30] will enable those techniques to

detect more defects. Octet[2] reduces the dynamic analysis

overhead significantly and we intend to investigate the per-

formance gains achieved by integration OMEN with it. The ap-

proach based on concurrent function pairs [4] shares similar

goals in reducing the bug detection effort. Reproducing the

bugs [10, 21] that manifest occasionally in multi-threaded

executions is orthogonal to our work as our goal is to detect

defects before the software is deployed.

7. Conclusions

Designing effective multithreaded test cases is challenging

and thread safety violations in multithreaded libraries can

easily go undetected. We propose an approach for synthe-

487



sizing multithreaded tests to enable deadlock detection. Our

approach is completely automatic and requires just the im-

plementation of the library that needs to be tested. Elaborate

experimentation shows the effectiveness of our tool, named

OMEN, in detecting real deadlocks in thread-safe classes of

popular libraries.
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A. Problem Formulation

We formally present the problem of synthesizing multi-

threaded test cases that is addressed in the paper.

Definition A.1. Lock operation sequence (α) is defined as

a sequence of lock and unlock operations on a set of objects

O such that,

α : l(o) u(o) α | l(o) α u(o) | α l(o) u(o) | ∈,

where o ∈ O, l(o) and u(o) represent the acquire and release

of lock on object o respectively.

The definition of α states that every lock is always fol-

lowed by a corresponding unlock operation. It further states

that if a lock is acquired on an object o′ while the lock on

object o is held, then the lock on o can be released only after

the lock on o′ is released.

Definition A.2. Cyclic Acquisition Property (CAP): A

sequence of lock operation sequences, α1, α2, ..., αn satisfy

CAP if the following conditions hold:

1. αi = βi
1 l(oi) βi

2 l(oi+1) βi
3 and u(oi) 6∈ βi

2, where

βi
1, βi

2 and βi
3 correspond to a sequence of lock and

unlock operations.

2. on = o1.
The above property is a necessary condition for a dead-

lock to manifest. The first condition ensures the nested ac-

quisition of oi+1 while holding a lock on object oi. The sec-

ond condition ensures the creation of a cycle. We now define

the problem of identifying the combination of methods, with

appropriate parameters, that need to be invoked concurrently

across multiple threads for a deadlock to manifest.

Let S be the source class that needs to be tested to expose

deadlocking scenarios while invoking the public methods

in the class, MS be the set of methods implemented in S

and MI be the set of all method invocations in the seed

testsuite, I. A method invocation, mi ∈ MI, is defined as

o0i .µj(o
1
i , o

2
i , ..., o

nµj

i ) where µj ∈ MS, o0i is the receiver

object, (o1i , o
2
i , ..., o

nµj

i ) are parameters to µj and nµj
is the

number of parameters to µj . Let µ be a function that gives

the mapping from the method invocation to the appropriate

method implementation in S (i.e., µ(mi) = µj).

We defineOi = {(o0i , o
1
i , ..., o

nµ(mi)

i )} as the set of objects

used in the invocation of mi. We represent the cumulative

collection of the objects used in the method invocations

across the testsuite as O =
|MI|⋃

i=1

Oi. Let α(mi) represent the

lock operation sequence generated on execution of mi.

Definition A.3. Concurrent Method Invocation Synthesis

Given MI and O, generate a set of concurrent method invo-

cations, MC, such that,

1. There exists some sequence which is a permutation of
|MC|⋃

k=1

α(mk) that satisfies CAP (see Definition A.2), where

mk = o0k.µj(o
1
k, o

2
k, ..., o

nµj

k ), µj ∈
|MI|⋃

i=1

µ(mi), Ok =

{o0k, o
1
k, o

2
k, ..., o

nµj

k } and Ok ⊆ O,

2. For every pair mk, mk′ ∈ MC, mk and mk′ can be executed

concurrently.

These conditions ensure that a set of method invocations

is chosen from the seed testsuite, assigned parameters from

the global collection of object instances used in the testsuite

appropriately so that executing the methods in some order

generates a sequence of lock operation sequences that satis-

fies CAP.

The problem addressed in the paper is to synthesize a test

such that a different thread executes each method invocation

in MC concurrently. Such a concurrent execution can poten-

tially be used to detect a deadlock in S. For any given MI and

O, multiple sets of concurrent method invocations may exist

leading to the generation of multiple multithreaded tests.
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