Malavika Samak Research Statement

My research aims to develop techniques, tools, and workflows that improve developer productiv-
ity and software quality. Software systems now use a vast suite of software components and tools, including
software libraries, build systems, interactive development environments, testing frameworks, and compilers. As
a result, the developer experience and the resulting reliability, security, and performance of the software systems
that developers produce are directly related to the quality of the software components and tools that developers
can discover and utilize.

My recent research focuses on designing program analysis techniques for software libraries. Software
libraries play a critical role in the software development process. They expose APIs that provide useful function-
ality and create abstractions that enable developers to focus on the core application logic, leading to modular
software development. Furthermore, several factors influence optimal library utilization — (a) awareness of the
most appropriate libraries, (b) the ability to reason about a library across various dimensions that include
correctness, security, performance, and memory usage, and (c) the ease of incorporating a library to serve
the functional requirements of the application.

Changing trends in software engineering have exacerbated the complexities of modular software development,
including (a) an order of magnitude increase in available libraries,! which imposes a cognitive burden on
the developer to make the right choices, (b) fast-paced software development resulting in the deployment of
under-tested software products in a race to capture the market, negatively impacting software quality, (c)
heightened churn of software developers where code ownership is in constant flux, compromising software support,
(d) a broad spectrum of programming languages with custom syntax, semantics and recommended best practices,
affecting the ability to reason about code, and (e) growth in the number of smart devices and appliances from
numerous vendors, with varying configurations that include memory capacity, processing power, operating
system, networking support, etc., thus creating a need for software customization. These changes necessitate a
fundamental rethink of the software development process surrounding the usage of software libraries.

Research Vision

I envision a future where developers are armed to navigate the constantly evolving software
ecosystem effectively. My goal is to design approaches to discover, reason, customize, and adapt code
to efficiently build defect-free software systems to realize this vision. I am particularly interested in exploring
the following research questions: a) Is it possible to search for code with constraints on program properties
that include functionality, performance, memory consumption, binary size, and concurrency? b) Can we
automatically construct targeted tests that expose the violation of a specified property? ¢) Is it possible to
automatically construct code hybrids that combine the desired properties of input code samples? d) Can we
automate the integration of software libraries into user applications? Successful research in this area will reduce

the complexities of modern software development. Code repositories

/—{\‘\
I have investigated a subset of these research questions J })
in the context of object-oriented languages, specifically . 3
for Java. The vibrant community of Java developers Potential
and a large corpus of available code make it an appro- SNl o 1%) Analyze
priate candidate to explore the above questions. Also, % S
the complexity associated with class inheritance, poly- 2 || Synthesized tests

. . . O— Defects
morphism, data encapsulation, concurrency, data/interface =} Memory footprint
accessibility, and aliases makes Java well-suited to eval- . LA
uate the applicability and rigor of any proposed solu- % it reen [. .
. -— - ustomize
tion. Adapters Customized
Library Library f

To ease the discovery of Java classes based on input func- Constraints

Safaty, Memary, CPU, ...

tionality from extensive collections of codebases, I designed
a search technique [2] and evaluated it on open source

GitHub (http://github.com/about), a popular source code hosting platform, hosts around 200 million repositories.

Malavika Samak
& malavika@csail. mit.edu o @ malavikasamak.com Page 1 of 4

http://github.com/about
mailto:malavika@csail.mit.edu
http://malavikasamak.com

Java classes. The technique leverages the complementary strengths of distributed embedding-based search and
program analysis to yield meaningful results. I also built the first set of algorithms that reason about the
safety of accessing a class under concurrency by automatically synthesizing targeted tests and executions
to reveal thread-safety violations in classes [4, 7, 5, 8]. These techniques employ a carefully crafted combination
of static and dynamic analysis, constraint solving, and automated code generation to construct defect-revealing
multithreaded tests. Further, to ease library integration, I developed an approach to synthesize verified
adapters [3] by integrating symbolic execution, constraint solving, and program synthesis, enabling a drop-in
replacement of classes.

e Scarching for Java classes

Developers maintaining software systems often need to replace one of the classes in the source codebase with a
functionally equivalent class. Potential use cases include deprecation of deployed classes, the need to change
vendors to satisfy organizational needs or intellectual property constraints, improved performance or memory
usage, or the desire to identify and use better versions that may contain fewer defects. While software repositories
often have suitable class replacements, finding such replacements can be challenging owing to the extant code
bases (billions of lines of code) and the intricacies of object-oriented languages. The challenges include (a)
functionality spread across multiple source files and classes, (b) complex type hierarchies created by a mixture
of primitive types, user-defined types, generics, and wild cards, (c) varying accessibility levels for the APIs and
the data, (d) distinct algorithms that offer the same functionality, (e) unique implementation styles, and (f)
finally, the vast search space of classes rendering a pure program analysis based approach intractable.

I designed a new technique and implemented a system, CLASSFINDER [2], for automatically finding replacement
Java classes. Given a query class, CLASSFINDER automatically searches large codebases to identify and rank
potential replacement classes. CLASSFINDER combines two complementary techniques: embedding-based class
ranking and method compatibility matching. Embedding-based class ranking maps the method names in a
class to a high-dimensional vector, with the cosine similarity metric over the resulting vector space serving
as a proxy for the intended functional similarity between the classes. This ranking eliminates the irrelevant
classes and narrows the search space. Subsequently, method compatibility matching computes a type-similarity
metric between matched methods and fields to effectively derank candidate replacement classes that 1) operate
with incompatible or overly specific types, 2) contain empty or placeholder methods, or 3) contain semantic
differences. CLASSFINDER was evaluated on several open-source Java query classes with a search corpus of ~600
thousand open-source classes. The results indicate that ClassFinder can effectively find suitable
replacement classes.

e Synthesizing Verified Adapters

Manually updating an application to use a different class can be cumbersome and error-prone. For instance, even
when class versions are updated, backward compatibility is not always maintained. Furthermore, ensuring that
the application’s behavior is unchanged can become non-trivial because an existing class in the library can differ
from the chosen replacement class in the new library across multiple dimensions. These include signatures of the
provided interfaces, the underlying functionality offered by these interfaces, and the internal data representation
which impacts their implementation. This motivates the need for a technique that can synthesize an adapter
for a given replacement class so that the synthesized adapter is equivalent to the existing class.

I designed and implemented a new algorithm [3], which, given a pair of original and replacement classes,
automatically synthesizes an adapter class that implements the same interface as the original class by leveraging
the APIs offered by the replacement class. To perform this replacement, the system constructs an inter-class
equivalence predicate that defines state equivalence between the instances of the two classes. These predicates
are synthesized by symbolically executing methods defined by the classes to identify a set of relevant symbolic
expressions and equating them appropriately. The algorithm generates sketches that encode a search space of
candidate method invocation sequences for each adapter method. These sketches are solved using the inter-class
equivalence predicate to synthesize the required adapter class. Thus, the technique can synthesize intricate
adapter classes that are guaranteed to be equivalent to the corresponding input classes.

Malavika Samak
& malavika@csail. mit.edu o @ malavikasamak.com Page 2 of 4

mailto:malavika@csail.mit.edu
http://malavikasamak.com

Analyze: Synthesizing multithreaded tests

Analyzing third-party libraries for software quality issues that include software bugs, memory bloat, execution
bottlenecks, and security issues is essential to ensure the reliability of a client application. Further, detecting
concurrency bugs in libraries can be challenging due to many plausible library usage scenarios and the
intricacies associated with concurrency bugs. Successfully detecting these bugs in libraries requires identifying:
i) the methods that need to be invoked concurrently, ii) the inputs passed to these methods, iii) the execution
context leading up to the method invocations, and iv) the interleaving of the threads that cause the erroneous
behavior. Unfortunately, neither fuzzing-based testing techniques nor over-approximate static analyses are
well-positioned to detect subtle concurrency defects while retaining high accuracy alongside sufficient coverage.
While dynamic analysis techniques [6] can be helpful, I observed their success is critically dependent on the
availability of defect-revealing multithreaded tests. Without a priori knowledge of the defects, manually con-
structing such tests is non-trivial.

As part of my Ph.D. thesis, I designed the first set of algorithms to automatically generate targeted
multithreaded tests to detect concurrency bugs in libraries [4, 7, 5, 8]. The key insight underlying the design
is that a subset of the properties observed when the defects manifest in a concurrent execution can also be
observed in a sequential execution or via static analysis. I explored two design variants: (a) path-agnostic test
synthesis and (b) path-aware test synthesis. The path-agnostic analysis analyzes the execution traces obtained
from executing the input sequential tests and produces a concurrent test that creates the necessary execution
state conducive for triggering deadlocks, data races, or atomicity violations. The path-aware test synthesis
technique explores newer paths that are not covered by the input sequential tests. It is a directed, iterative
and scalable algorithm where each step of the iterative process includes statically identifying sub-goals towards
the goal of failing an input specification, generating a plan toward meeting these goals, and merging the paths
traversed dynamically with the plan computed statically via constraint solving to generate a new test. The
approach reports complete reproduction scenarios, guaranteed to be true, for the bugs it finds. The tests
automatically synthesized by these techniques helped expose more than 300 concurrency bugs in popular
libraries (Oracle Java Development Kit, Google Guava Collections, HyperSQL DataBase, Apache OpenNLP,
etc.), including many previously unknown bugs that were subsequently fixed.

e [ture Directions

I will continue to execute my research vision and use my experience to address other open challenges in building
high-quality software systems by exploring the following research directions:

Code search and recommendation systems: Effective code search and recommendation systems can be a
source of positive disruption to the software development process. For example, building search strategies that
can be deployed earlier in the software development cycle can influence the choice of the programming
language and the set of libraries. Comprehensively addressing this problem requires building search tech-
niques beyond functional equivalence, motivating the need for parameterized code search techniques with
constraints on program properties that include performance, memory consumption, binary size, concurrency, IP
compatibility, and application context. Also, expanding the expressiveness of code search queries with richer
formats (e.g., natural language, DSL) can cater to a diverse set of users and reduce the entry barrier for new
programmers. Eventually, building recommendation systems that analyze available code and an application to
suggest relevant software artifacts can pave the way for automated code evolution.

Synthesizing library hybrids: Developers are interested in ensuring that their application conforms to specific
system properties, such as thread safety, memory footprint, and energy efficiency. Ensuring these properties
often requires combining functionalities and implementations from different libraries, as no one library can meet
all requirements. I am interested in exploring the problem of automatically synthesizing library hybrids from a
diverse set of libraries so that the synthesized library provides the necessary functionality while adhering to a
user-defined set of system properties. I think this can be achieved by building algorithms that can carve out
semantically meaningful components from a library relevant to an application and construct adapters to
integrate carved components. This can be challenging as these components may be harvested from diverse
sources with custom coding styles, underlying algorithms, and data structure choices. My experience with
synthesizing executions, dynamic and static analyses, and building verified adapters can help design approaches
to address this problem.

Malavika Samak
& malavika@csail. mit.edu o @ malavikasamak.com Page 3 of 4

mailto:malavika@csail.mit.edu
http://malavikasamak.com

Specification-driven benchmark generation: The growth and adoption of newer programming languages
with custom syntax, semantics, defects, and best practices have necessitated the continuous need for new
program analyses. To meet this growing need, oftentimes, researchers propose analyses with varying assumptions
and tradeoffs concerning precision and scalability. However, the availability of numerous analyses for a given
language and the absence of a standard benchmark to measure their relative strengths makes it harder for a
user to select the right program analysis technique. Comparing different analyzers requires a comprehensive
and realistic code corpus that can serve as an unbiased reference to analyze the analyzers. My vision is to
automatically generate such corpora by leveraging large open-source code repositories and input specifications
to build techniques that combine the complementary strengths of program synthesis and learning. Also, I expect
such a technique to serve as a teaching tool that generates realistic examples for programmers to learn the
language idioms. My experience with a wide variety of property-driven generation of programs along with search
strategies to identify similar code can be useful in addressing this problem.

Applications to other domains and programming models: Program analysis has been successfully applied
in other fields, including databases, distributed systems, operating systems, security, and high-performance
computing. I am interested in building novel techniques that can cater to the custom requirements of these
domains. While at Microsoft Research, I jointly developed an approach for optimizing big data queries using
program synthesis and static analysis [9]. I also explored the application of path profiling to improve branch
prediction in C compilers during my internship at Google. As part of a collaboration between MIT and Aarno
Labs, I developed formal approaches for provenance tracking in the context of detecting security vulnerabilities
such as Adups FOTA malware in Android devices [1]. T will continue to explore this direction and am especially
keen on exploring the application of my prior work on generating multithreaded tests in other domains such as
operating systems, distributed systems, software-defined networks, and event-driven programs.

Closing Remarks

Novel program analysis techniques that can search, reason, customize and adapt software will be instrumental
in managing the rapid growth of code and emerging programming languages. I look forward to continuing to
contribute to this space.

References
[1] Michael Gordon, Jordan Eikenberry, Anthony Eden, Jeffrey Perkins, Malavika Samak, Henny Sipma, and

Martin Rinard. Clearscope: Full Stack Provenance Graph Generation for Transparent Computing on Mobile
Devices. MIT Technical Report 2020.

[2] Malavika Samak, Jose Pablo Cambronero, and Martin C. Rinard. Searching for Replacement Classes. (under
submission). arXiv: 2110.05638.

[3] Malavika Samak, Deokhwan Kim, and Martin C. Rinard. Synthesizing Replacement Classes. ACM POPL
2020.

[4] Malavika Samak and Murali Krishna Ramanathan. Multithreaded Test Synthesis for Deadlock Detection.
ACM OOPSLA 2014.

[6] Malavika Samak and Murali Krishna Ramanathan. Synthesizing Tests for Detecting Atomicity Violations.
ACM ESEC/FSE 2015.

[6] Malavika Samak and Murali Krishna Ramanathan. Trace Driven Dynamic Deadlock Detection and Repro-
duction. ACM PPoPP 2014.

[7] Malavika Samak, Murali Krishna Ramanathan, and Suresh Jagannathan. Synthesizing Racy Tests. ACM
PLDI 2015.

[8] Malavika Samak, Omer Tripp, and Murali Krishna Ramanathan. Directed Synthesis of Failing Concurrent
Executions. ACM OOPSLA 2016.

[9] Matthias Schlaipfer, Kaushik Rajan, Akash Lal, and Malavika Samak. Optimizing Big-Data Queries Using
Program Synthesis. ACM SOSP 2017.

Malavika Samak
& malavika@csail. mit.edu o @ malavikasamak.com Page 4 of 4

https://arxiv.org/abs/2110.05638
mailto:malavika@csail.mit.edu
http://malavikasamak.com

	Research Vision
	 Searching for Java classes
	Synthesizing Verified Adapters
	Analyze: Synthesizing multithreaded tests
	Future Directions
	Closing Remarks
	References

